Title: The unreasonable effectiveness of few-shot learning for machine translation
Authors: Xavier Garcia, Yamini Bansal, Colin Cherry, George Foster, Maxim Krikun, Fangxiaoyu Feng, Melvin Johnson, Orhan Firat
Published: 2nd February 2023 (Thursday) @ 20:19:46
Link: http://arxiv.org/abs/2302.01398v1

Abstract

We demonstrate the potential of few-shot translation systems, trained with unpaired language data, for both high and low-resource language pairs. We show that with only 5 examples of high-quality translation data shown at inference, a transformer decoder-only model trained solely with self-supervised learning, is able to match specialized supervised state-of-the-art models as well as more general commercial translation systems. In particular, we outperform the best performing system on the WMT’21 English - Chinese news translation task by only using five examples of English - Chinese parallel data at inference. Moreover, our approach in building these models does not necessitate joint multilingual training or back-translation, is conceptually simple and shows the potential to extend to the multilingual setting. Furthermore, the resulting models are two orders of magnitude smaller than state-of-the-art language models. We then analyze the factors which impact the performance of few-shot translation systems, and highlight that the quality of the few-shot demonstrations heavily determines the quality of the translations generated by our models. Finally, we show that the few-shot paradigm also provides a way to control certain attributes of the translation — we show that we are able to control for regional varieties and formality using only a five examples at inference, paving the way towards controllable machine translation systems.