Title: Attention-Based Models for Speech Recognition
Authors: Jan Chorowski, Dzmitry Bahdanau, Dmitriy Serdyuk, Kyunghyun Cho, Yoshua Bengio
Published: 24th June 2015 (Wednesday) @ 19:10:33
Link: http://arxiv.org/abs/1506.07503v1

Abstract

Recurrent sequence generators conditioned on input data through an attention mechanism have recently shown very good performance on a range of tasks in-cluding machine translation, handwriting synthesis and image caption gen-eration. We extend the attention-mechanism with features needed for speech recognition. We show that while an adaptation of the model used for machine translation in reaches a competitive 18.7% phoneme error rate (PER) on the TIMIT phoneme recognition task, it can only be applied to utterances which are roughly as long as the ones it was trained on. We offer a qualitative explanation of this failure and propose a novel and generic method of adding location-awareness to the attention mechanism to alleviate this issue. The new method yields a model that is robust to long inputs and achieves 18% PER in single utterances and 20% in 10-times longer (repeated) utterances. Finally, we propose a change to the at- tention mechanism that prevents it from concentrating too much on single frames, which further reduces PER to 17.6% level.