Title: End-to-End Text-Dependent Speaker Verification
Authors: Georg Heigold, Ignacio Moreno, Samy Bengio, Noam Shazeer
Published: 27th September 2015 (Sunday) @ 07:43:36
Link: http://arxiv.org/abs/1509.08062v1
Abstract
In this paper we present a data-driven, integrated approach to speaker verification, which maps a test utterance and a few reference utterances directly to a single score for verification and jointly optimizes the systemâs components using the same evaluation protocol and metric as at test time. Such an approach will result in simple and efficient systems, requiring little domain-specific knowledge and making few model assumptions. We implement the idea by formulating the problem as a single neural network architecture, including the estimation of a speaker model on only a few utterances, and evaluate it on our internal âOk Googleâ benchmark for text-dependent speaker verification. The proposed approach appears to be very effective for big data applications like ours that require highly accurate, easy-to-maintain systems with a small footprint.