Title: Billion-scale semi-supervised learning for image classification
Authors: I. Zeki Yalniz, Hervé Jégou, Kan Chen, Manohar Paluri, Dhruv Mahajan
Published: 2nd May 2019 (Thursday) @ 02:08:18
Link: http://arxiv.org/abs/1905.00546v1

Abstract

This paper presents a study of semi-supervised learning with large convolutional networks. We propose a pipeline, based on a teacher/student paradigm, that leverages a large collection of unlabelled images (up to 1 billion). Our main goal is to improve the performance for a given target architecture, like ResNet-50 or ResNext. We provide an extensive analysis of the success factors of our approach, which leads us to formulate some recommendations to produce high-accuracy models for image classification with semi-supervised learning. As a result, our approach brings important gains to standard architectures for image, video and fine-grained classification. For instance, by leveraging one billion unlabelled images, our learned vanilla ResNet-50 achieves 81.2% top-1 accuracy on the ImageNet benchmark.