Title: On the Effects of Heterogeneous Data Sources on Speech-to-Text Foundation Models
Authors: Jinchuan Tian, Yifan Peng, William Chen, Kwanghee Choi, Karen Livescu, Shinji Watanabe
Published: 13th June 2024 (Thursday) @ 16:22:37
Link: http://arxiv.org/abs/2406.09282v1

Abstract

The Open Whisper-style Speech Model (OWSM) series was introduced to achieve full transparency in building advanced speech-to-text (S2T) foundation models. To this end, OWSM models are trained on 25 public speech datasets, which are heterogeneous in multiple ways. In this study, we advance the OWSM series by introducing OWSM v3.2, which improves on prior models by investigating and addressing the impacts of this data heterogeneity. Our study begins with a detailed analysis of each dataset, from which we derive two key strategies: data filtering with proxy task to enhance data quality, and the incorporation of punctuation and true-casing using an open large language model (LLM). With all other configurations staying the same, OWSM v3.2 improves performance over the OWSM v3.1 baseline while using 15% less training data.


Table 1: Statistics on the OWSM data mixture

Volume includes only the training subset. The data volume can differ from the officially claimed for each dataset due to our data preparation policy. For the language column, the 3-character language IDs follow ISO-639-3 standards; digital numbers represent the number of languages for ASR data and the number of translation directions for ST data. License information is based on our collection. Punctuation and Case-Sensitivity specify whether the original text label contains punctuation and is case-sensitive. Dash - means the language is not case-sensitive. Long-Form specifies whether the segmentation information is provided to splice short clips into long-form examples.

CorpusTypeVolume (h)Language# ExamplesLicensePunctuationCase-SensitivityLong-Form
aidatatang [24]ASR140zho164KCC-BY-NC-ND-4.0\usym2718-\usym2718
AISHELL [25]ASR150zho120KApache 2.0\usym2718-\usym2718
ami [26]ASR141eng24KCC-BY-4.0\usym2718\usym2718\usym2714
babel [27]ASR211525318K-\usym2718\usym2718\usym2714
CommonVoice (CV) [28]ASR1636010411.8MCC0-1.0\usym2714\usym2714\usym2718
CoVoST2 [29]ST8550225.9MCC-BY-NC 4.0\usym2714\usym2714\usym2718
Fisher Callhome Spanish [30]ASR241spa36K-\usym2718\usym2718\usym2714
FLEURS [31]ASR950102268KCC-BY-4.0\usym2714\usym2714\usym2718
GigaSpeech [11]ASR12520eng2.0MApache 2.0\usym2714\usym2718\usym2714
GigaST [32]ST2445324.0MCC-BY-NC 4.0\usym2714\usym2714\usym2714
KsponSpeech [33]ASR960kor619KMIT License\usym2718-\usym2718
LibriSpeech (LS) [14]ASR897eng145KCC-BY-4.0\usym2718\usym2718\usym2714
MagicData (Magic.) [34]ASR711zho573KCC-BY-NC-ND-4.0\usym2718-\usym2718
Multilingual LibriSpeech (MLS)[35]ASR5067088.6MCC-BY-4.0\usym2718\usym2718\usym2714
MuST-C - ASR part [36]ASR2657eng400KCC-BY-NC-ND-4.0\usym2714\usym2714\usym2714
MuST-C - ST part [36]ST8163151.2MCC-BY-NC-ND-4.0\usym2714\usym2714\usym2714
Googlei18n1ASR1326211.0MCC BY-SA 4.0\usym2718\usym2714\usym2718
ReazonSpeech [37]ASR18864jpn11.1MApache 2.0\usym2714-\usym2718
Russian Open STT [38]ASR4791rus4.7MCC-BY-NC\usym2718\usym2718\usym2718
SPGISpeech [39]ASR4999eng2.0M-\usym2714\usym2714\usym2718
Fisher SwitchBoard (SWBD) [40]ASR3214eng498K-\usym2718\usym2718\usym2714
TEDLIUM3 [41]ASR472eng67KCC-BY-NC-ND 3.0\usym2718\usym2718\usym2714
VCTK [42]ASR25eng43KCC-BY-4.0\usym2714\usym2714\usym2718
VoxForge [43]ASR2358148KGPL\usym2718\usym2718\usym2718
VoxPopuli - ASR part [44]ASR170216310KCC0-1.0\usym2714\usym2714\usym2714
VoxPopuli - ST part [44]ST1114021KCC0-1.0\usym2714\usym2714\usym2714
WenetSpeech [12]ASR14963zho2.2MCC-BY-4.0\usym2718-\usym2714
Total18039615058.5M