Swin Transformer

Hierarchical Vision Transformer using Shifted Windows

Ze Liu and colleagues in ICCV 2021

Anil Keshwani @ PINLab Reading Group - 3rd November 2021

Summary: Swin Transformer

- General purpose computer vision backbone
- Hierarchical transformer with representations computed with shifted windows
- Linear complexity with respect to image size
- Self-attention limited to non-overlapping, local windows
- Tractable for dense prediction tasks (and image classification):
 - Object detection (bbox) 58.7 box AP (COCO test-dev) +2.7 box AP over SotA
 - Object detection (mask) 51.1 mask AP (COCO test-dev) - +2.6 mask AP over SotA
 - Semantic segmentation 53.5 mIoU (ADE20K val) +3.2 mIoU over SotA
 - ImageNet Top-1 Accuracy on Classification of 87.8% (SotA 90.9% now)

Object Detection on COCO test-dev

Semantic Segmentation on ADE20K val

Idea: Central Approach of Swin Transformer

$$\Omega(\text{MSA}) = 4hwC^2 + 2(hw)^2C,$$

$$\Omega(\text{W-MSA}) = 4hwC^2 + 2M^2hwC,$$

- Hierarchical feature maps by merging image patches in deeper (on left: higher) layers
- Compute self-attention only within each local window (on left: red demarcations)
- Approach allows linear complexity, not quadratic complexity with respect to "tokens"
- Dense prediction tasks are tractable
 - i.e. pixel-level predictions for semantic segmentation
- cf: Vision Transformer (ViT) computes
 - Single low-resolution feature map
 - Global self-attention \rightarrow quadratic complexity
- Complexity equations: Windows contain MxM patches over an h x w x C input image. Fix M=7

Method: Architecture of Swin Transformer "Tiny" (Swin-T)

- Image split into non-overlapping patches (like ViT) \rightarrow "tokens"
 - $4 \times 4 \times 3 = 48$ dimensional tokens
- Linear projection \rightarrow reduce dimensionality to C
- Stage 1 Swin Transformer block: modified self-attention
 - \rightarrow retains token number: (H / 4) x (W / 4)

Stage 2:

- Patch Merging of 2 x 2 groups \rightarrow 2x resolution downsampling
- Linear Projection of 4C-dimensional features \rightarrow output dimension set to 2C
- Ex. Starting with 4 "patches" we get 1, but with double the Channels, to increase representation capacity
- Stage 2 is repeated two more times: Stage 3 & Stage 4

 \rightarrow produces hierarchical feature map resolutions like ResNet/VGG

Method: Swin Transformer Block

Two Successive Swin Transformer Blocks

- Like a Transformer Block but...
- Replace Multi-headed Self-Attention with shifted windows version
- Note shift of windows across Blocks
- Swin Transformer Block:
 - Layer Normalisation
 - (Shifted) Window Multi-headed Self-Attention
 - + Residual Connection
 - Layer Normalisation
 - 2-layer MLP with GELU activation
 - + Residual connection

Method: Shifted window partitioning in successive blocks

- Not inter-block connections in window-based self-attention

 \rightarrow limits modelling power (c.f. global self-attention!)

- "Shifted" window partitioning approach
- Alternate between partitioning configurations in consecutive Swin Transformer Blocks
 - \rightarrow Enables information flow across windows

Example (on left)

- 8 x 8 image partitioned into 2 x 2 windows of size 4 x 4
 - i.e. M = 4
- Next self-attention module has shifted window configuration
 - \rightarrow displace windows by (floor(M / 2), floor(M / 2))

Some Details: Relative Position Bias + Architectural Variants

Relative Position Bias

- Relative positional embeddings used
- Relative position performs better than absolute empirically

Attention $(Q, K, V) = \text{SoftMax}(QK^T/\sqrt{d} + B)V,$

- Actually B not $M^2 \times M^2$; smaller (2M - 1) x (2M - 1)

	Imag	geNet	CC	OCO	ADE20k
	top-1	top-5	APbox	AP ^{mask}	mIoU
w/o shifting	80.2	95.1	47.7	41.5	43.3
shifted windows	81.3	95.6	50.5	43.7	46.1
no pos.	80.1	94.9	49.2	42.6	43.8
abs. pos.	80.5	95.2	49.0	42.4	43.2
abs.+rel. pos.	81.3	95.6	50.2	43.4	44.0
rel. pos. w/o app.	79.3	94.7	48.2	41.9	44.1
rel. pos.	81.3	95.6	50.5	43.7	46.1

Table 4. Ablation study on the *shifted windows* approach and different position embedding methods on three benchmarks, using the Swin-T architecture.

Architecture Variants

- Base model: Swin-B with model size and complexity on par with ViT-B
- Swin-T, Swin-S and Swin-L are 0.25x, 0.5x and 2x size and complexity
 - Swin-T comparable to ResNet-50; Swin-S to ResNet-101
- Window size, M = 7 (default; all experiments)
- C: Channels from hidden layers in Stage 1

Swin-T: C = 96, layer numbers = $\{2, 2, 6, 2\}$ Swin-S: C = 96, layer numbers = $\{2, 2, 18, 2\}$ Swin-B: C = 128, layer numbers = $\{2, 2, 18, 2\}$

Swin-L: C = 192, layer numbers = $\{2, 2, 18, 2\}$

Experiments: Results for Image Classification

Regular ImageNet-1K training: 1.28M training images and 50K validation images from 1K classes

- No repeated augmentation or exponential moving averaging, as is used for ViT
- 1.5% for Swin-T (81.3%) over DeiT-S (79.8%) using 224 x 224 input
- +1.5%/1.4% for Swin-B (83.3%/84.5%) over
 DeiT-B (81.8%/83.1%) using 224 x 224 or 384 x 384 input
- Note: No architecture search, like e.g. EfficientNet

Pre-training on ImageNet-22K (14.2 million images; 22K classes) + fine-tuning on ImageNet-1K

- Swin-B obtains 86.4% top-1 accuracy, which is 2.4% higher than ViT with similar inference latency

(a) Regular ImageNet-1K trained models								
method	image	#param	FI ODe	throughput	ImageNet			
method	size	#param.	I'LOI S	(image / s)	top-1 acc.			
RegNetY-4G [48]	224^{2}	21M	4.0G	1156.7	80.0			
RegNetY-8G [48]	224^{2}	39M	8.0G	591.6	81.7			
RegNetY-16G [48]	224^{2}	84M	16.0G	334.7	82.9			
EffNet-B3 [58]	300^{2}	12M	1.8G	732.1	81.6			
EffNet-B4 [58]	380^{2}	19M	4.2G	349.4	82.9			
EffNet-B5 [58]	456^{2}	30M	9.9G	169.1	83.6			
EffNet-B6 [58]	528 ²	43M	19.0G	96.9	84.0			
EffNet-B7 [58]	600^{2}	66M	37.0G	55.1	84.3			
ViT-B/16 [20]	384^{2}	86M	55.4G	85.9	77.9			
ViT-L/16 [20]	384^{2}	307M	190.7G	27.3	76.5			
DeiT-S [63]	224^{2}	22M	4.6G	940.4	79.8			
DeiT-B [63]	224^{2}	86M	17.5G	292.3	81.8			
DeiT-B [63]	384^{2}	86M	55.4G	85.9	83.1			
Swin-T	224^{2}	29M	4.5G	755.2	81.3			
Swin-S	224^{2}	50M	8.7G	436.9	83.0			
Swin-B	224^{2}	88M	15.4G	278.1	83.5			
Swin-B	384 ²	88M	47.0G	84.7	84.5			
(b) ImageNet-22K pre-trained models								
mathod	image	#porom	EL ODe	throughput	ImageNet			
method	size	#param.	FLOFS	(image / s)	top-1 acc.			
R-101x3 [38]	384^{2}	388M	204.6G	1	84.4			
R-152x4 [38]	480^{2}	937M	840.5G	-	85.4			
ViT-B/16 [20]	384^{2}	86M	55.4G	85.9	84.0			
ViT-L/16 [20]	384^{2}	307M	190.7G	27.3	85.2			
Swin-B	224^{2}	88M	15.4G	278.1	85.2			
Swin-B	384^{2}	88M	47.0G	84.7	86.4			
Swin-L	384^{2}	197M	103.9G	42.1	87.3			
Table 1 Comparison of different backbones on ImageNet-1K clas-								

Table 1. Comparison of different backbones on ImageNet-1K classification. Throughput is measured using the GitHub repository of [68] and a V100 GPU, following [63].

Experiments: Results for Object Detection

(a) Various frameworks									
Metho	bd	Backb	one	APbox	AP ₅₀ ^{box}	AP ₇₅ ^{box}	#paran	n. FLOPs	FPS
Casca	de	R-5	0	46.3	64.3	50.5	82M	739G	18.0
Mask R-	CNN	Swin	-T	50.5	69.3	54.9	86M	745G	15.3
ATC	c	R-5	0	43.5	61.9	47.0	32M	205G	28.3
AIS	3	Swin	-T	47.2	66.5	51.3	36M	215G	22.3
PanDoin	teV2	R-5	0	46.5	64.6	50.3	42M	274G	13.6
Reprom	15 V Z	Swin	-T	50.0	68.5	54.2	45M	283G	12.0
Spars	se	R-5	0	44.5	63.4	48.2	106M	I 166G	21.0
R-CN	N	Swin	-T	47.9	67.3	52.3	110M	I 172G	18.4
(b)	Vario	us bac	kbo	nes w.	Casc	ade M	ask R-	CNN	
	AP ^{box}	AP ₅₀ ^{box}	AP ^b	ox AP ^m	ask AP5	nask AP	mask par	amFLOP	s FPS
DeiT-S [†]	48.0	67.2	51.	7 41.	4 64	.2 44	.3 80	M 889G	10.4
R50	46.3	64.3	50.	5 40.	1 61	.7 43	.4 82	M 739G	18.0
Swin-T	50.5	69.3	54.9	9 43.	7 66	.6 47	.1 86	M 745G	15.3
X101-32	48.1	66.5	52.4	4 41.	6 63	.9 45	0.2 101	M 819G	12.8
Swin-S	51.8	70.4	56.	3 44.	7 67	.9 48	8.5 107	M 838G	12.0
X101-64	48.3	66.4	52.	3 41.	7 64	.0 45	6.1 140	M 972G	10.4
Swin-B	51.9	70.9	56.	5 45.	0 68	.4 48	.7 145	5M 982G	11.6

COCO 2017: 118K training, 5K validation and 20K test-dev images

 Swin-T architecture brings consistent +3.4~4.2
 box AP gains over ResNet-50; with slightly larger model size, FLOPs and latency

Comparison with DeiT-S (with Cascade Mask R-CNN)

- Swin-T has +2.5 box AP and +2.3 mask AP higher than DeiT-S with similar model size (86M vs. 80M)
- significantly higher inference speed (15.3 FPS vs. 10.4 FPS)

Lower inference speed of DeiT mainly due to its quadratic complexity to input image size

Experiments: Results for Semantic Segmentation

ADE20K: 150 semantic categories; 25K images in total, with 20K for training, 2K for validation, and another 3K for testing

- Swin-S +5.3 mIoU over DeiT-S with similar computation cost (49.3 vs. 44.0)
- Swin-S also +4.4 mIoU higher than ResNet-101, and +2.4 mIoU higher than ResNeSt-101
- Swin-L with ImageNet-22K pretraining surpasses SETR (previous SotA) by +3.2 mIoU

Much smaller parameter size of DeiT-S maybe seems cheeky; authors equated FLOPs not model size.

ADE20K		val	test	Hoaram	EL ODe	EDC
Method	Backbone	mIoU	score	#param.	FLOFS	ITS
DANet [23]	ResNet-101	45.2	-	69M	1119G	15.2
DLab.v3+ [11]	ResNet-101	44.1	-	63M	1021G	16.0
ACNet [24]	ResNet-101	45.9	38.5	-		
DNL [71]	ResNet-101	46.0	56.2	69M	1249G	14.8
OCRNet [73]	ResNet-101	45.3	56.0	56M	923G	19.3
UperNet [69]	ResNet-101	44.9	(- .	86M	1029G	20.1
OCRNet [73]	HRNet-w48	45.7	-	71M	664G	12.5
DLab.v3+ [11]	ResNeSt-101	46.9	55.1	66M	1051G	11.9
DLab.v3+ [11]	ResNeSt-200	48.4	(1	88M	1381G	8.1
SETR [81]	T-Large [‡]	50.3	61.7	308M	-	-
UperNet	DeiT-S [†]	44.0	-	52M	1099G	16.2
UperNet	Swin-T	46.1	-	60M	945G	18.5
UperNet	Swin-S	49.3	-	81M	1038G	15.2
UperNet	Swin-B [‡]	51.6	-	121M	1841G	8.7
UperNet	Swin-L [‡]	53.5	62.8	234M	3230G	6.2

Table 3. Results of semantic segmentation on the ADE20K val and test set. [†] indicates additional deconvolution layers are used to produce hierarchical feature maps. [‡] indicates that the model is pre-trained on ImageNet-22K.

Experiments: Ablations

	ImageNet		CC	OCO	ADE20k
	top-1	top-5	AP ^{box}	AP ^{mask}	mIoU
w/o shifting	80.2	95.1	47.7	41.5	43.3
shifted windows	81.3	95.6	50.5	43.7	46.1
no pos.	80.1	94.9	49.2	42.6	43.8
abs. pos.	80.5	95.2	49.0	42.4	43.2
abs.+rel. pos.	81.3	95.6	50.2	43.4	44.0
rel. pos. w/o app.	79.3	94.7	48.2	41.9	<mark>44</mark> .1
rel. pos.	81.3	95.6	50.5	43.7	46.1

Table 4. Ablation study on the *shifted windows* approach and different position embedding methods on three benchmarks, using the Swin-T architecture. w/o shifting: all self-attention modules adopt regular window partitioning, without *shifting*; abs. pos.: absolute position embedding term of ViT; rel. pos.: the default settings with an additional relative position bias term (see Eq. (4)); app.: the first scaled dot-product term in Eq. (4).

Shifted Windows

- +1.1% top-1 accuracy on ImageNet-1K, +2.8 box AP/+2.2 mask AP on COCO, and +2.8 mIoU on ADE20K
- ...even without shifted windows, performance is good, just not as good!
- Not much latency overhead paid for using shifted windows with cyclic-shifted for efficient batching

Positional Embeddings

- Positional embeddings outperform absolute
- Adding absolute with relative reduces performance marginally for object detection and segmentation (but increase classification slightly; 0.4%)
 - e.g. 46.1 versus 44.0 in ADE20K mIoU

Efficient batch computation

Additional and undersized windows created by shifting of windows \rightarrow problems with batching and latency. Solved with cyclic-shifting (see paper)

Conclusions

- The Swin Transformer introduces some of the "inductive biases" inherent to CNNS in the ViT approach and architecture via the Patch Merging module

 \rightarrow Model becomes hierarchical and resembles common backbones with increasing channel width with higher layers

- This model effectively implements Local Attention (not novel), but very effectively
- Shifting windows further circumvents utility of global attention and improves performance (evidenced via ablation)
- Local attention (M = 7) linearises complexity

 \rightarrow opens up dense prediction tasks, where ViT falls down e.g. segmentation

- Relative positional embeddings may enable translation invariance
 - Why does this improve dense task performance but hurt classification?

Resources

Swin Transformer

- Paper: https://arxiv.org/pdf/2103.14030.pdf
- Code: <u>https://github.com/microsoft/Swin-Transformer/</u>

Datasets

- COCO Detection Evaluation (including Metrics): <u>https://cocodataset.org/#detection-eval</u>
- ADE20K Dataset: <u>https://groups.csail.mit.edu/vision/datasets/ADE20K/</u>

Baselines

- Data-efficient Image Transformer: <u>https://paperswithcode.com/method/deit</u>
- Vision Transformer: <u>https://paperswithcode.com/method/vision-transformer</u>
 - See also <u>https://ai.googleblog.com/2020/12/transformers-for-image-recognition-at.html</u>

State of the Art

- ImageNet Classification SotA on Papers with Code: <u>https://paperswithcode.com/sota/image-classification-on-imagenet</u>
- ADE20K val Semantic Segmentation SotA on Papers with Code: <u>https://paperswithcode.com/sota/semantic-segmentation-on-ade20k-val</u>
- Object Detection on COCO test-dev SotA on Papers with Code: <u>https://paperswithcode.com/sota/object-detection-on-coco</u>

Thanks, That's a wrap!

