Swin Transformer

Hierarchical Vision Transformer using
Shifted Windows

Ze Liu and colleagues in ICCV 2021

Anil Keshwani @ PINLab Reading Group - 3rd November 2021

Summary: Swin Transformer

General purpose computer vision backbone

Hierarchical transformer with
representations computed with shifted
windows

Linear complexity with respect to image size

Self-attention limited to non-overlapping,
local windows

Tractable for dense prediction tasks (and
image classificationﬁ

- Object detection (bbox) - 58.7 box AP (COCO
test-dev) - +2.7 box AP over SotA

- Object detection (mask) - 51.1 mask AP
(COCO test-dev) - +2.6 mask AP over SotA

- Semantic segmentation - 53.5 mloU (ADE20K
val) - +3.2 mloU over SotA

- ImageNet Top-1 Accuracy on Classification of
87.8% (SotA 90.9% now

Object Detection on COCO test-dev

Leaderboard Dataset

View boxAP v by Date v for All models

111

Other models -e- Models with highest box AP

Semantic Segmentation on ADE20K val

Leaderboard Dataset

MIOU
5 u

Jan'17 17 Jan'18 18 Jan'19 w19 we20 w20 Jan2t

Othermodels -~ Models with highest mioU

Idea: Central Approach of Swin Transformer

segmentation

classification detection ...

&z
A

P =rer ~= =
£

e
LA A

74

(a) Swin Transformer (ours)

classification
0

4
Sk 1ox
-

//
P = P 16x
e

p=. -
16x
/[// —

(b) ViT

Q(MSA) = 4hwC? + 2(hw)?C,

Q(W-MSA) = 4hwC? + 2M*hwC,

Hierarchical feature maps by merging image
patches in deeper (on left: higher) layers

Compute self-attention only within each local
window (on left: red demarcations)

Approach allows linear complexity, not
quadratic complexity with respect to “tokens”

Dense prediction tasks are tractable

- l.e. pixel-level predictions for semantic
segmentation

cf: Vision Transformer (ViT) computes
- Single low-resolution feature map

- Global self-attention — quadratic
complexity

Complexity equations: Windows contain MxM
patches over an h x w x C input image. Fix M=7

Method: Architecture of Swin Transformer “Tiny” (Swin-T)

Hi W, Ho o W
EXEX4C EXEXSC

...........

Stage 4

HxWx3

Swin
Transformer
Block

Images

Patch Merging

Patch Partition

...........

(a) Architecture

Image split into non-overlapping patches (like
ViT) — “tokens”

- 4 x4x3=48dimensional tokens
Linear projection — reduce dimensionality to C

Stage 1 Swin Transformer block: modified
self-attention

— retains token number: (H / 4) x (W / 4)

Stage 2:

- Patch Merging of 2 x 2 groups — 2x
resolution downsampling

- Linear Projection of 4C-dimensional
features — output dimension set to 2C

- Ex. Starting with 4 “patches” we get 1, but
with double the Channels, to increase
representation capacity

Stage 2 is repeated two more times: Stage 3 &
Stage 4

— produces hierarchical feature map resolutions
like ResNet/VGG

Method: Swin Transformer Block

\

5%

N
L/
\

N>
/
N

A

- e e e e o o e o e e e e e e oy,

\

~

---‘-—--’

-~ - -

SW-MSA

Two Successive Swin Transformer Blocks

e wm wm wm o o wm wm Em o e wm o mm o o e wm wm o P

\

Like a Transformer Block but...

Replace Multi-headed Self-Attention with
shifted windows version

Note shift of windows across Blocks
Swin Transformer Block:
- Layer Normalisation

- (Shifted) Window Multi-headed
Self-Attention

-+ Residual Connection
- Layer Normalisation
- 2-layer MLP with GELU activation

-+ Residual connection

Method: Shifted window partitioning in successive blocks

- Not inter-block connections in window-based
self-attention

— limits modelling power (c.f. global self-attention!)

- “Shifted” window partitioning approach
Layer | Layer 1+1

- Alternate between partitioning configurations in
consecutive Swin Transformer Blocks

A local window to
perform self-attention — Enables information flow across windows

\4

A patch

Example (on left)

- 8 x 8image partitioned into 2 x 2 windows of size 4 x 4
- LeeM=4

- Next self-attention module has shifted window
configuration

— displace windows by (floor(M / 2), floor(M / 2))

Some Details: Relative Position Bias + Architectural Variants

Relative Position Bias

- Relative positional embeddings used

- Relative position performs better than absolute

empirically

Attention(Q, K, V) = SoftMax(QK” /v/d + B)V,
- Actually B not M? x M?; smaller (2M - 1) x (2M - 1)

ImageNet COCO ADE20k

top-1 top-5 | AP*™ AP™* | mloU

w/o shifting 80.2 95.1 | 47.7 415 433
shifted windows | 81.3 95.6 | 50.5 43.7 46.1
no pos. 80.1 949 | 492 426 43.8

abs. pos. 80.5 952 | 490 424 43.2
abs.+rel. pos. 81.3 956 | 50.2 434 44.0
rel. pos. w/oapp. | 79.3 94.7 | 482 419 44.1
rel. pos. 813 956 | 505 43.7 46.1

Table 4. Ablation study on the shifted windows approach and dif-
ferent position embedding methods on three benchmarks, using

the Swin-T architecture.

Architecture Variants

Base model: Swin-B with model size and
complexity on par with ViT-B

Swin-T, Swin-S and Swin-L are 0.25%, 0.5x and 2x
size and complexity

- Swin-T comparable to ResNet-50; Swin-S to
ResNet-101

Window size, M = 7 (default; all experiments)

C: Channels from hidden layers in Stage 1
Swin-T: C' = 96, layer numbers = {2,2,6,2}
Swin-S: C' = 96, layer numbers ={2, 2, 18, 2}
Swin-B: C' = 128, layer numbers ={2, 2, 18, 2}
Swin-L: C' = 192, layer numbers ={2, 2, 18, 2}

Experiments: Results for Image Classification

L. L.) (a) Regular ImageNet-1K trained models

Regular ImageNet-1K training: 1.28M training images thod ™3 o g1 ops throvghput/imageNet
k i i metho £ aram. S s ; .

and 50K validation images from 1K classes 3 i
RegNetY-4G [28] | 2247 2IM 4.0G 1156.7 | 80.0
))) RegNetY-8G [48] 2242 39M 8.0G 591.6 81.7
- Norepeated augmentation or exponential moving RegNetY-16G 18] 224 84M 160G 3347 | 829
EffNet-B4 [58] |380° 19M 4.2G 349.4 82.9

.) EffNet-B5 [58] |4562 30M 9.9G 169.1 83.6
- 1.5% for Swin-T (81.3%) over DeiT-S (79.8%) EffNet-B6 [58] |5282 43M 190G 969 | 840

. . 2 59 2
using 224 x 224 lnput hf‘fNel-B7 [58] 6002 66M 37.0G 55.1 84.3
VIiT-B/16 [20] |384% 86M 554G 859 719

ViT-L/16 [20] |384% 307M 190.7G 27.3 76.5

- +15%/14% for Swin-B (833%/845%) over DeiT-S [62] |2247 22M 4.6G 9404 79.8
. . . 2 2
DeiT-B (81.8%/83.1%) using 224 x 224 or 384 x DEPRIS. 1274 WM Lo 224 | L8
) DeiT-B [63] |3842 86M 554G 85.9 83.1
384 input Swin-T 2247 29M 45G 7552 | 813
Swin-S 224> 50M 8.7G 4369 83.0
- Note: No architecture search, like e.g. EfficientNet SwinB |224° 88M 154G 2781 | 835
Swin-B 3842 88M 470G 847 84.5
(b) ImageNet-22K pre-trained models
po— image i, FLOPS throughput|ImageNet
size ’ (image / s)|top-1 acc.
Pre-training on ImageNet-22K (14.2 million images; 22K R-101x3 [38] 1384 388M 204.6G - 84.4
: . R-152x4 [38] |4807 937M 8405G - 85.4
classes) + fine-tuning on ImageNet-1K VITB/16[20] |384%7 86M 554G 859 84.0
VIT-L/16 [20] |3842 307M 190.7G 27.3 85.2
- Swin-B obtains 86.4% top-1 accuracy, which is :win-B §§42 ;SSM 15.3g 2878.1 gzz
. . . . win-B 42 88M 47. 4.7 4
2.4% higher than ViT with similar inference o 3842 197M 103.9G 42.1 473
]atency Table 1. Comparison of different backbones on ImageNet-1K clas-

sification. Throughput is measured using the GitHub repository
of [68] and a V100 GPU, following [63].

Experiments: Results for Object Detection

Method

(a) Various frameworks

Backbone

AP AP2X AP

#param. FLOPs FPS

Cascade
Mask R-CNN

R-50
Swin-T

46.3
50.5

64.3
69.3

50.5
54.9

82M
86M

739G
745G

18.0
15.3

ATSS

R-50
Swin-T

43.5
47.2

61.9
66.5

47.0
SIS

32M
36M

205G
215G

28.3
223

RepPointsV2

R-50
Swin-T

46.5
50.0

64.6
68.5

50.3
54.2

42M
45M

274G
283G

13.6
12.0

Sparse
R-CNN

R-50
Swin-T

44.5
47.9

63.4
67.3

48.2
52.3

106M
110M

166G
172G

21.0
18.4

(b) Various backbones w. Cascade Mask R-CNN

APPo Aok Apho

Apmask APSH;;'Sk Apl7n5ask

param FLOPsFPS

DeiT-ST
R50
Swin-T

48.0
46.3
50.5

67.2
64.3
69.3

51.7
50.5
54.9

41.4
40.1
43.7

64.2
61.7
66.6

44.3
43.4
47.1

80M 889G 10.4
82M 739G 18.0
86M 745G 15.3

X101-32
Swin-S

48.1
51.8

66.5
70.4

52.4
56.3

41.6
44.7

63.9
67.9

45.2
48.5

101M 819G 12.8
107M 838G 12.0

X101-64

48.3

Swin-B

51.9

66.4
70.9

523
56.5

41.7
45.0

64.0
68.4

45.1
48.7

140M 972G 10.4
145M 982G 11.6

COCO 2017: 118K training, 5K validation and 20K
test-dev images

- Swin-T architecture brings consistent +3.4~4.2
box AP gains over ResNet-50; with slightly
larger model size, FLOPs and latency

Comparison with DeiT-S (with Cascade Mask R-CNN)

- Swin-T has +2.5 box AP and +2.3 mask AP
higher than DeiT-S with similar model size
(86M vs. 80M)

- significantly higher inference speed (15.3 FPS
vs. 10.4 FPS)

Lower inference speed of DeiT mainly due to its
quadratic complexity to input image size

Experiments: Results for Semantic Segmentation

ADE20K: 150 semantic categories; 25K images in
total, with 20K for training, 2K for validation, and
another 3K for testing

- Swin-S +5.3 mloU over DeiT-S with similar
computation cost (49.3 vs. 44.0)

- Swin-S also +4.4 mloU higher than ResNet-101,
and +2.4 mloU higher than ResNeSt-101

- Swin-L with ImageNet-22K pretraining
surpasses SETR (previous SotA) by +3.2 mloU

Much smaller parameter size of DeiT-S maybe seems
cheeky; authors equated FLOPs not model size.

ADE20K val test
Method Backbone |mloU score #fparam. FLOPs FPS
DANet [23] ResNet-101 [452 - | 69M 1119G 15.2

DLab.v3+ [11] ResNet-101 | 44.1 - 63M 1021G 16.0
ACNet [24] ResNet-101 | 459 38.5 -
DNL [71] ResNet-101 | 46.0 56.2| 69M 1249G 14.8
OCRNet [73] ResNet-101 | 45.3 56.0| 56M 923G 19.3
UperNet [69] ResNet-101 | 449 - 86M 1029G 20.1

OCRNet [73] HRNet-w48 | 457 - 71IM 664G 12.5
DLab.v3+ [1 1] ResNeSt-101| 46.9 55.1| 66M 1051G 11.9

DLab.v3+[11] ResNeSt-200| 484 - | 88M 1381G 8.1
SETR [¢1] T-Large! |503 61.7| 308M - .
UperNet DeiT-ST | 440 - | 52M 1099G 16.2
UperNet Swin-T |46.1 - | 60M 945G 185
UperNet Swin-S [493 - | 8IM 1038G 15.2
UperNet Swin-B¥ | 516 - 12IM 1841G 8.7

UperNet Swin-L* | 535 62.8| 234M 3230G 6.2

Table 3. Results of semantic segmentation on the ADE20K val
and test set. | indicates additional deconvolution layers are used
to produce hierarchical feature maps. § indicates that the model is
pre-trained on ImageNet-22K.

Experiments: Ablations

ImageNet COCO ADE20k

top-1 top-5| AP®™ AP™¥ | mloU

w/o shifting 80.2 95.1 | 47.7 415 43.3

shifted windows | 81.3 95.6 | 50.5 43.7 46.1

no pos. 80.1 949 | 49.2 426 43.8

abs. pos. 80.5 952 | 49.0 424 43.2

abs.+rel. pos. 81.3 956 | 502 434 44.0

rel. pos. w/oapp. | 79.3 94.7 | 48.2 419 44.1

rel. pos. 81.3 95.6 | 50.5 43.7 46.1
Table 4. Ablation study on the shifted windows approach and dif-
ferent position embedding methods on three benchmarks, using
the Swin-T architecture. w/o shifting: all self-attention modules
adopt regular window partitioning, without shifting; abs. pos.: ab-
solute position embedding term of ViT; rel. pos.: the default set-
tings with an additional relative position bias term (see Eq. (4));

app.: the first scaled dot-product term in Eq. (4).

Shifted Windows

- +1.1% top-1 accuracy on ImageNet-1K, +2.8 box
AP/+2.2 mask AP on COCO, and +2.8 mloU on
ADE20K

- ...even without shifted windows, performance is
good, just not as good!

- Not much latency overhead paid for using shifted
windows with cyclic-shifted for efficient batching

Positional Embeddings
- Positional embeddings outperform absolute

- Adding absolute with relative reduces performance
marginally for object detection and segmentation
(but increase classification slightly; 0.4%)

- e.g.46.1versus 44.0 in ADE20K mloU

Efficient batch computation

Additional and undersized windows created by shifting of
windows — Eroblems with batching and latency. Solved
with cyclic-shifting (see paper)

Conclusions

The Swin Transformer introduces some of the “inductive biases” inherent to CNNS in
the ViT approach and architecture via the Patch Merging module

— Model becomes hierarchical and resembles common backbones with increasing
channel width with higher layers

- This model effectively implements Local Attention (not novel), but very effectively

- Shifting windows further circumvents utility of global attention and improves
performance (evidenced via ablation)

- Local attention (M = 7) linearises complexity
— opens up dense prediction tasks, where ViT falls down e.g. segmentation
- Relative positional embeddings may enable translation invariance

- Why does this improve dense task performance but hurt classification?

Resources

Swin Transformer

- Paper: https://arxiv.org/pdf/2103.14030.pdf

- Code: https://github.com/microsoft/Swin-Transformer/

Datasets

- COCO Detection Evaluation (including Metrics): https://cocodataset.org/#detection-eval

- ADE20K Dataset: https://groups.csail.mit.edu/vision/datasets/ADE20K/

Baselines

- Data-efficient Image Transformer: https://paperswithcode.com/method/deit

- Vision Transformer: https://paperswithcode.com/method/vision-transformer

- See also https://ai.googleblog.com/2020/12 /transformers-for-image-recognition-at.html

State of the Art

- ImageNet Classification SotA on Papers with Code: https://paperswithcode.com/sota/image-classification-on-imagenet

- ADE20K val Semantic Segmentation SotA on Papers with Code:
https://paperswithcode.com/sota/semantic-segmentation-on-ade20k-val

- Object Detection on COCO test-dev SotA on Papers with Code: https://paperswithcode.com/sota/object-detection-on-coco

https://arxiv.org/pdf/2103.14030.pdf
https://github.com/microsoft/Swin-Transformer/
https://cocodataset.org/#detection-eval
https://groups.csail.mit.edu/vision/datasets/ADE20K/
https://paperswithcode.com/method/deit
https://paperswithcode.com/method/vision-transformer
https://ai.googleblog.com/2020/12/transformers-for-image-recognition-at.html
https://paperswithcode.com/sota/image-classification-on-imagenet
https://paperswithcode.com/sota/semantic-segmentation-on-ade20k-val
https://paperswithcode.com/sota/object-detection-on-coco

Thanks, That's
a wrap!

