
Swin Transformer

Hierarchical Vision Transformer using
Shifted Windows

Ze Liu and colleagues in ICCV 2021

Anil Keshwani @ PINLab Reading Group - 3rd November 2021

Summary: Swin Transformer

- General purpose computer vision backbone

- Hierarchical transformer with
representations computed with shifted
windows

- Linear complexity with respect to image size

- Self-attention limited to non-overlapping,
local windows

- Tractable for dense prediction tasks (and
image classification):

- Object detection (bbox) - 58.7 box AP (COCO
test-dev) - +2.7 box AP over SotA

- Object detection (mask) - 51.1 mask AP
(COCO test-dev) - +2.6 mask AP over SotA

- Semantic segmentation - 53.5 mIoU (ADE20K
val) - +3.2 mIoU over SotA

- ImageNet Top-1 Accuracy on Classification of
87.8% (SotA 90.9% now)

- Hierarchical feature maps by merging image
patches in deeper (on left: higher) layers

- Compute self-attention only within each local
window (on left: red demarcations)

- Approach allows linear complexity, not
quadratic complexity with respect to “tokens”

- Dense prediction tasks are tractable

- i.e. pixel-level predictions for semantic
segmentation

- cf: Vision Transformer (ViT) computes

- Single low-resolution feature map

- Global self-attention → quadratic
complexity

- Complexity equations: Windows contain MxM
patches over an h x w x C input image. Fix M=7

Idea: Central Approach of Swin Transformer

- Image split into non-overlapping patches (like
ViT) → “tokens”

- 4 x 4 x 3 = 48 dimensional tokens

- Linear projection → reduce dimensionality to C

- Stage 1 Swin Transformer block: modified
self-attention

→ retains token number: (H / 4) x (W / 4)

- Stage 2:

- Patch Merging of 2 x 2 groups → 2x
resolution downsampling

- Linear Projection of 4C-dimensional
features → output dimension set to 2C

- Ex. Starting with 4 “patches” we get 1, but
with double the Channels, to increase
representation capacity

- Stage 2 is repeated two more times: Stage 3 &
Stage 4

→ produces hierarchical feature map resolutions
like ResNet/VGG

Method: Architecture of Swin Transformer “Tiny” (Swin-T)

- Like a Transformer Block but…
- Replace Multi-headed Self-Attention with

shifted windows version

- Note shift of windows across Blocks

- Swin Transformer Block:

- Layer Normalisation

- (Shifted) Window Multi-headed
Self-Attention

- + Residual Connection

- Layer Normalisation

- 2-layer MLP with GELU activation

- + Residual connection

Method: Swin Transformer Block

- Not inter-block connections in window-based
self-attention

→ limits modelling power (c.f. global self-attention!)

- “Shifted” window partitioning approach

- Alternate between partitioning configurations in
consecutive Swin Transformer Blocks

→ Enables information flow across windows

Example (on left)

- 8 x 8 image partitioned into 2 x 2 windows of size 4 x 4

- i.e. M = 4

- Next self-attention module has shifted window
configuration

→ displace windows by (floor(M / 2), floor(M / 2))

Method: Shifted window partitioning in successive blocks

Some Details: Relative Position Bias + Architectural Variants
Architecture Variants

- Base model: Swin-B with model size and
complexity on par with ViT-B

- Swin-T, Swin-S and Swin-L are 0.25x, 0.5x and 2x
size and complexity

- Swin-T comparable to ResNet-50; Swin-S to
ResNet-101

- Window size, M = 7 (default; all experiments)

- C: Channels from hidden layers in Stage 1

Relative Position Bias

- Relative positional embeddings used

- Relative position performs better than absolute
empirically

- Actually B not M2 x M2 ; smaller (2M - 1) x (2M - 1)

Regular ImageNet-1K training: 1.28M training images
and 50K validation images from 1K classes

- No repeated augmentation or exponential moving
averaging, as is used for ViT

- 1.5% for Swin-T (81.3%) over DeiT-S (79.8%)
using 224 x 224 input

- +1.5%/1.4% for Swin-B (83.3%/84.5%) over
DeiT-B (81.8%/83.1%) using 224 x 224 or 384 x
384 input

- Note: No architecture search, like e.g. EfficientNet

Pre-training on ImageNet-22K (14.2 million images; 22K
classes) + fine-tuning on ImageNet-1K

- Swin-B obtains 86.4% top-1 accuracy, which is
2.4% higher than ViT with similar inference
latency

Experiments: Results for Image Classification

COCO 2017: 118K training, 5K validation and 20K
test-dev images

- Swin-T architecture brings consistent +3.4∼4.2
box AP gains over ResNet-50; with slightly
larger model size, FLOPs and latency

Comparison with DeiT-S (with Cascade Mask R-CNN)

- Swin-T has +2.5 box AP and +2.3 mask AP
higher than DeiT-S with similar model size
(86M vs. 80M)

- significantly higher inference speed (15.3 FPS
vs. 10.4 FPS)

Lower inference speed of DeiT mainly due to its
quadratic complexity to input image size

Experiments: Results for Object Detection

ADE20K: 150 semantic categories; 25K images in
total, with 20K for training, 2K for validation, and
another 3K for testing

- Swin-S +5.3 mIoU over DeiT-S with similar
computation cost (49.3 vs. 44.0)

- Swin-S also +4.4 mIoU higher than ResNet-101,
and +2.4 mIoU higher than ResNeSt-101

- Swin-L with ImageNet-22K pretraining
surpasses SETR (previous SotA) by +3.2 mIoU

Much smaller parameter size of DeiT-S maybe seems
cheeky; authors equated FLOPs not model size.

Experiments: Results for Semantic Segmentation

Shifted Windows

- +1.1% top-1 accuracy on ImageNet-1K, +2.8 box
AP/+2.2 mask AP on COCO, and +2.8 mIoU on
ADE20K

- …even without shifted windows, performance is
good, just not as good!

- Not much latency overhead paid for using shifted
windows with cyclic-shifted for efficient batching

Positional Embeddings

- Positional embeddings outperform absolute

- Adding absolute with relative reduces performance
marginally for object detection and segmentation
(but increase classification slightly; 0.4%)

- e.g. 46.1 versus 44.0 in ADE20K mIoU

Efficient batch computation

Additional and undersized windows created by shifting of
windows → problems with batching and latency. Solved
with cyclic-shifting (see paper)

Experiments: Ablations

Conclusions

- The Swin Transformer introduces some of the “inductive biases” inherent to CNNS in
the ViT approach and architecture via the Patch Merging module

→ Model becomes hierarchical and resembles common backbones with increasing
channel width with higher layers

- This model effectively implements Local Attention (not novel), but very effectively

- Shifting windows further circumvents utility of global attention and improves
performance (evidenced via ablation)

- Local attention (M = 7) linearises complexity

→ opens up dense prediction tasks, where ViT falls down e.g. segmentation

- Relative positional embeddings may enable translation invariance

- Why does this improve dense task performance but hurt classification?

Swin Transformer

- Paper: https://arxiv.org/pdf/2103.14030.pdf

- Code: https://github.com/microsoft/Swin-Transformer/

Datasets

- COCO Detection Evaluation (including Metrics): https://cocodataset.org/#detection-eval

- ADE20K Dataset: https://groups.csail.mit.edu/vision/datasets/ADE20K/

Baselines

- Data-efficient Image Transformer: https://paperswithcode.com/method/deit

- Vision Transformer: https://paperswithcode.com/method/vision-transformer

- See also https://ai.googleblog.com/2020/12/transformers-for-image-recognition-at.html

State of the Art

- ImageNet Classification SotA on Papers with Code: https://paperswithcode.com/sota/image-classification-on-imagenet

- ADE20K val Semantic Segmentation SotA on Papers with Code:
https://paperswithcode.com/sota/semantic-segmentation-on-ade20k-val

- Object Detection on COCO test-dev SotA on Papers with Code: https://paperswithcode.com/sota/object-detection-on-coco

Resources

https://arxiv.org/pdf/2103.14030.pdf
https://github.com/microsoft/Swin-Transformer/
https://cocodataset.org/#detection-eval
https://groups.csail.mit.edu/vision/datasets/ADE20K/
https://paperswithcode.com/method/deit
https://paperswithcode.com/method/vision-transformer
https://ai.googleblog.com/2020/12/transformers-for-image-recognition-at.html
https://paperswithcode.com/sota/image-classification-on-imagenet
https://paperswithcode.com/sota/semantic-segmentation-on-ade20k-val
https://paperswithcode.com/sota/object-detection-on-coco

Thanks, That’s
a wrap!

