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Summary: Swin Transformer

- General purpose computer vision backbone

- Hierarchical transformer with 
representations computed with shifted 
windows

- Linear complexity with respect to image size

- Self-attention limited to non-overlapping, 
local windows

- Tractable for dense prediction tasks (and 
image classification):

- Object detection (bbox) - 58.7 box AP (COCO 
test-dev) - +2.7 box AP over SotA

- Object detection (mask) - 51.1 mask AP 
(COCO test-dev) - +2.6 mask AP over SotA

- Semantic segmentation - 53.5 mIoU (ADE20K 
val) - +3.2 mIoU over SotA

- ImageNet Top-1 Accuracy on Classification of 
87.8% (SotA 90.9% now)



- Hierarchical feature maps by merging image 
patches in deeper (on left: higher) layers 

- Compute self-attention only within each local 
window (on left: red demarcations)

- Approach allows linear complexity, not 
quadratic complexity with respect to “tokens”

- Dense prediction tasks are tractable

- i.e. pixel-level predictions for semantic 
segmentation

- cf: Vision Transformer (ViT) computes

- Single low-resolution feature map

- Global self-attention → quadratic 
complexity

- Complexity equations: Windows contain MxM 
patches over an h x w x C input image. Fix M=7

Idea: Central Approach of Swin Transformer



- Image split into non-overlapping patches (like 
ViT) → “tokens” 

- 4 x 4 x 3 = 48 dimensional tokens

- Linear projection → reduce dimensionality to C

- Stage 1 Swin Transformer block: modified 
self-attention

→ retains token number: (H / 4) x (W / 4)

- Stage 2: 

- Patch Merging of 2 x 2 groups → 2x 
resolution downsampling 

- Linear Projection of 4C-dimensional 
features → output dimension set to 2C

- Ex. Starting with 4 “patches” we get 1, but 
with double the Channels, to increase 
representation capacity

- Stage 2 is repeated two more times: Stage 3 & 
Stage 4

→ produces hierarchical feature map resolutions 
like ResNet/VGG

Method: Architecture of Swin Transformer “Tiny” (Swin-T)



- Like a Transformer Block but…
- Replace Multi-headed Self-Attention with 

shifted windows version

- Note shift of windows across Blocks

- Swin Transformer Block:

- Layer Normalisation

- (Shifted) Window Multi-headed 
Self-Attention

- + Residual Connection

- Layer Normalisation

- 2-layer MLP with GELU activation

- + Residual connection

Method: Swin Transformer Block



- Not inter-block connections in window-based 
self-attention

→ limits modelling power (c.f. global self-attention!)

- “Shifted” window partitioning approach

- Alternate between partitioning configurations in 
consecutive Swin Transformer Blocks

→ Enables information flow across windows

Example (on left)

- 8 x 8 image partitioned into 2 x 2 windows of size 4 x 4 

- i.e. M = 4

- Next self-attention module has shifted window 
configuration

→ displace windows by ( floor(M / 2), floor(M / 2) )

Method: Shifted window partitioning in successive blocks



Some Details: Relative Position Bias + Architectural Variants
Architecture Variants

- Base model: Swin-B with model size and 
complexity on par with ViT-B

- Swin-T, Swin-S and Swin-L are 0.25x, 0.5x and 2x 
size and complexity

- Swin-T comparable to ResNet-50; Swin-S to 
ResNet-101

- Window size, M = 7 (default; all experiments)

- C: Channels from hidden layers in Stage 1

Relative Position Bias

- Relative positional embeddings used

- Relative position performs better than absolute 
empirically

- Actually B not M2 x M2 ; smaller (2M - 1) x (2M - 1)



Regular ImageNet-1K training: 1.28M training images 
and 50K validation images from 1K classes

- No repeated augmentation or exponential moving 
averaging, as is used for ViT

- 1.5% for Swin-T (81.3%) over DeiT-S (79.8%) 
using 224 x 224 input

- +1.5%/1.4% for Swin-B (83.3%/84.5%) over 
DeiT-B (81.8%/83.1%) using 224 x 224 or 384 x 
384 input

- Note: No architecture search, like e.g. EfficientNet

Pre-training on ImageNet-22K (14.2 million images; 22K 
classes) + fine-tuning on ImageNet-1K

- Swin-B obtains 86.4% top-1 accuracy, which is 
2.4% higher than ViT with similar inference 
latency

Experiments: Results for Image Classification



COCO 2017: 118K training, 5K validation and 20K 
test-dev images

- Swin-T architecture brings consistent +3.4∼4.2 
box AP gains over ResNet-50; with slightly 
larger model size, FLOPs and latency

Comparison with DeiT-S (with Cascade Mask R-CNN)

- Swin-T has +2.5 box AP and +2.3 mask AP 
higher than DeiT-S with similar model size 
(86M vs. 80M)

- significantly higher inference speed (15.3 FPS 
vs. 10.4 FPS)

Lower inference speed of DeiT mainly due to its 
quadratic complexity to input image size

Experiments: Results for Object Detection



ADE20K: 150 semantic categories; 25K images in 
total, with 20K for training, 2K for validation, and 
another 3K for testing

- Swin-S +5.3 mIoU over DeiT-S with similar 
computation cost (49.3 vs. 44.0) 

- Swin-S also +4.4 mIoU higher than ResNet-101, 
and +2.4 mIoU higher than ResNeSt-101

- Swin-L with ImageNet-22K pretraining 
surpasses SETR (previous SotA) by +3.2 mIoU

Much smaller parameter size of DeiT-S maybe seems 
cheeky; authors equated FLOPs not model size.

Experiments: Results for Semantic Segmentation



Shifted Windows

- +1.1% top-1 accuracy on ImageNet-1K, +2.8 box 
AP/+2.2 mask AP on COCO, and +2.8 mIoU on 
ADE20K

- …even without shifted windows, performance is 
good, just not as good!

- Not much latency overhead paid for using shifted 
windows with cyclic-shifted for efficient batching

Positional Embeddings

- Positional embeddings outperform absolute

- Adding absolute with relative reduces performance 
marginally for object detection and segmentation 
(but increase classification slightly; 0.4%)

- e.g. 46.1 versus 44.0 in ADE20K mIoU

Efficient batch computation

Additional and undersized windows created by shifting of 
windows → problems with batching and latency. Solved 
with cyclic-shifting (see paper)

Experiments: Ablations



Conclusions

- The Swin Transformer introduces some of the “inductive biases” inherent to CNNS in 
the ViT approach and architecture via the Patch Merging module

→ Model becomes hierarchical and resembles common backbones with increasing 
channel width with higher layers

- This model effectively implements Local Attention (not novel), but very effectively

- Shifting windows further circumvents utility of global attention and improves 
performance (evidenced via ablation)

- Local attention (M = 7) linearises complexity 

→ opens up dense prediction tasks, where ViT falls down e.g. segmentation

- Relative positional embeddings may enable translation invariance

- Why does this improve dense task performance but hurt classification?



Swin Transformer

- Paper: https://arxiv.org/pdf/2103.14030.pdf

- Code: https://github.com/microsoft/Swin-Transformer/

Datasets

- COCO Detection Evaluation (including Metrics): https://cocodataset.org/#detection-eval

- ADE20K Dataset: https://groups.csail.mit.edu/vision/datasets/ADE20K/

Baselines

- Data-efficient Image Transformer: https://paperswithcode.com/method/deit

- Vision Transformer: https://paperswithcode.com/method/vision-transformer

- See also https://ai.googleblog.com/2020/12/transformers-for-image-recognition-at.html

State of the Art

- ImageNet Classification SotA on Papers with Code: https://paperswithcode.com/sota/image-classification-on-imagenet

- ADE20K val Semantic Segmentation SotA on Papers with Code: 
https://paperswithcode.com/sota/semantic-segmentation-on-ade20k-val

- Object Detection on COCO test-dev SotA on Papers with Code: https://paperswithcode.com/sota/object-detection-on-coco

Resources

https://arxiv.org/pdf/2103.14030.pdf
https://github.com/microsoft/Swin-Transformer/
https://cocodataset.org/#detection-eval
https://groups.csail.mit.edu/vision/datasets/ADE20K/
https://paperswithcode.com/method/deit
https://paperswithcode.com/method/vision-transformer
https://ai.googleblog.com/2020/12/transformers-for-image-recognition-at.html
https://paperswithcode.com/sota/image-classification-on-imagenet
https://paperswithcode.com/sota/semantic-segmentation-on-ade20k-val
https://paperswithcode.com/sota/object-detection-on-coco


Thanks, That’s 
a wrap!


