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Chapter 1

Introduction and setting

This set of lecture notes explores some of the (many) connections relating information theory,
statistics, computation, and learning. Signal processing, machine learning, and statistics all revolve
around extracting useful information from signals and data. In signal processing and information
theory, a central question is how to best design signals—and the channels over which they are
transmitted—to maximally communicate and store information, and to allow the most effective
decoding. In machine learning and statistics, by contrast, it is often the case that there is a
fixed data distribution that nature provides, and it is the learner’s or statistician’s goal to recover
information about this (unknown) distribution.

A central aspect of information theory is the discovery of fundamental results: results that
demonstrate that certain procedures are optimal. That is, information theoretic tools allow a
characterization of the attainable results in a variety of communication and statistical settings. As
we explore in these notes in the context of statistical, inferential, and machine learning tasks, this
allows us to develop procedures whose optimality we can certify—no better procedure is possible.
Such results are useful for a myriad of reasons; we would like to avoid making bad decisions or false
inferences, we may realize a task is impossible, and we can explicitly calculate the amount of data
necessary for solving different statistical problems.

1.1 Information theory

Information theory is a broad field, but focuses on several main questions: what is information,
how much information content do various signals and data hold, and how much information can be
reliably transmitted over a channel. We will vastly oversimplify information theory into two main
questions with corresponding chains of tasks.

1. How much information does a signal contain?

2. How much information can a noisy channel reliably transmit?

In this context, we provide two main high-level examples, one for each of these tasks.

Example 1.1 (Source coding): The source coding, or data compression problem, is to
take information from a source, compress it, decompress it, and recover the original message.
Graphically, we have

Source → Compressor → Decompressor → Receiver

6
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The question, then, is how to design a compressor (encoder) and decompressor (decoder) that
uses the fewest number of bits to describe a source (or a message) while preserving all the
information, in the sense that the receiver receives the correct message with high probability.
This fewest number of bits is then the information content of the source (signal). 3

Example 1.2: The channel coding, or data transmission problem, is the same as the source
coding problem of Example 1.1, except that between the compressor and decompressor is a
source of noise, a channel. In this case, the graphical representation is

Source → Compressor → Channel → Decompressor → Receiver

Here the question is the maximum number of bits that may be sent per each channel use in
the sense that the receiver may reconstruct the desired message with low probability of error.
Because the channel introduces noise, we require some redundancy, and information theory
studies the exact amount of redundancy and number of bits that must be sent to allow such
reconstruction. 3

1.2 Moving to statistics

Statistics and machine learning can—broadly—be studied with the same views in mind. Broadly,
statistics and machine learning can be thought of as (perhaps shoehorned into) source coding and
a channel coding problems.

In the analogy with source coding, we observe a sequence of data points X1, . . . , Xn drawn from
some (unknown) distribution P on a space X . For example, we might be observing species that
biologists collect. Then the analogue of source coding is to construct a model (often a generative
model) that encodes the data using relatively few bits: that is,

Source (P )
X1,...,Xn−→ Compressor

P̂→ Decompressor → Receiver.

Here, we estimate P̂—an empirical version of the distribution P that is easier to describe than
the original signal X1, . . . , Xn, with the hope that we learn information about the generating
distribution P , or at least describe it efficiently.

In our analogy with channel coding, we make a connection with estimation and inference.
Roughly, the major problem in statistics we consider is as follows: there exists some unknown
function f on a space X that we wish to estimate, and we are able to observe a noisy version
of f(Xi) for a series of Xi drawn from a distribution P . Recalling the graphical description of
Example 1.2, we now have a channel P (Y | f(X)) that gives us noisy observations of f(X) for each
Xi, but we may (generally) now longer choose the encoder/compressor. That is, we have

Source (P )
X1,...,Xn−→ Compressor

f(X1),...,f(Xn)−→ Channel P (Y | f(X))
Y1,...,Yn−→ Decompressor.

The estimation—decompression—problem is to either estimate f , or, in some cases, to estimate
other aspects of the source probability distribution P . In general, in statistics, we do not have
any choice in the design of the compressor f that transforms the original signal X1, . . . , Xn, which
makes it somewhat different from traditional ideas in information theory. In some cases that we
explore later—such as experimental design, randomized controlled trials, reinforcement learning
and bandits (and associated exploration/exploitation tradeoffs)—we are also able to influence the
compression part of the above scheme.

7
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Example 1.3: A classical example of the statistical paradigm in this lens is the usual linear
regression problem. Here the data Xi belong to Rd, and the compression function f(x) = θ>x
for some vector θ ∈ Rd. Then the channel is often of the form

Yi = θ>Xi︸ ︷︷ ︸
signal

+ εi︸︷︷︸
noise

,

where εi
iid∼ N(0, σ2) are independent mean zero normal perturbations. The goal is, given a

sequence of pairs (Xi, Yi), to recover the true θ in the linear model.
In active learning or active sensing scenarios, also known as (sequential) experimental design,
we may choose the sequence Xi so as to better explore properties of θ. Later in the course we
will investigate whether it is possible to improve estimation by these strategies. As one concrete
idea, if we allow infinite power, which in this context corresponds to letting ‖Xi‖ → ∞—
choosing very “large” vectors xi—then the signal of θ>Xi should swamp any noise and make
estimation easier. 3

For the remainder of the class, we explore these ideas in substantially more detail.

1.3 Outline and chapter discussion

We divide the lecture notes into four distinct parts, each of course interacting with the others,
but it is possible to read each as a reasonably self-contained unit. The lecture notes begin with
a revew (Chapter 2) that introduces the basic information-theoretic quantities that we discuss:
mutual information, entropy, and divergence measures. It is required reading for all the chapters
that follow.

Part I of the notes covers what I term “stability” based results. At a high level, this means that
we ask what can be gained by considering situations where individual observations in a sequence
of random variables X1, . . . , Xn have little effect on various functions of the sequence. We begin
in Chapter 3 with basic concentration inequalities, discussing how sums and related quantities can
converge quickly; while this material is essential for the remainder of the lectures, it does not depend
on particular information-theoretic techniques. We discuss some heuristic applications to problems
in statistical learning—empirical risk minimization—in this section of the notes. We provide a
treatment of more advanced ideas in Chapter 5, including some approaches to concentration via
entropy methods. We then turn in Chapter 4 carefully investigate generalization and convergence
guarantees—arguing that functions of a sample X1, . . . , Xn are representative of the full population
P from which the sample is drawn—based on controlling different information-theoretic quantities.
In this context, we develop PAC-Bayesian bounds, and we also use the same framework to present
tools to control generalization and convergence in interactive data analyses. These types of analyses
reflect modern statistics, where one performs some type of data exploration before committing to a
fuller analysis, but which breaks classical statistical approaches, because the analysis now depends
on the sample. Finally, we provide a chapter (Chapter 6) on disclosure limitation and privacy
techniques, all of which repose on different notions of stability in distribution.

Part II studies fundamental limits, using information-theoretic techniques to derive lower bounds
on the possible rates of convergence for various estimation, learning, and other statistical problems.

PartIII revisits all of our information theoretic notions from Chapter 2, but instead of sim-
ply giving definitions and a few consequences, provides operational interpretations of the different
information-theoretic quantities, such as entropy. Of course this includes Shannon’s original results

8
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on the relationship between coding and entropy (Chapter 13), but we also provide an interpreta-
tion of entropy and information as measures of uncertainty in statistical experiments and statistical
learning, which is a perspective typically missing from information-theoretic treatments of entropy
(Chapters TBD). We also relate these ideas to game-playing and maximum likelihood estimation.
Finally, we relate generic divergence measures to questions of optimality and consistency in statisti-
cal and machine learning problems, which allows us to delineate when (at least in asymptotic senses)
it is possible to computationally efficiently learn good predictors and design good experiments.

9



Chapter 2

Review of basic (and not so basic)
concepts in information theory

In this chapter, we discuss and review many of the basic concepts of information theory. Our
presentation is relatively brisk, as our main goal is to get to the meat of the lectures on applications
of these inequalities, but we must provide a starting point.

2.1 Basics of Information Theory

In this section, we review the basic definitions in information theory, including (Shannon) entropy,
KL-divergence, mutual information, and their conditional versions. Before beginning, I must make
an apology to any information theorist reading these notes: any time we use a log, it will always
be base-e. This is more convenient for our analyses, and it also (later) makes taking derivatives
much nicer.

In this first section, we will assume that all distributions are discrete; this makes the quantities
somewhat easier to manipulate and allows us to completely avoid any complicated measure-theoretic
quantities. In Section 2.2 of this note, we show how to extend the important definitions (for our
purposes)—those of KL-divergence and mutual information—to general distributions, where basic
ideas such as entropy no longer make sense. However, even in this general setting, we will see we
essentially lose no generality by assuming all variables are discrete.

2.1.1 Definitions

Here, we provide the basic definitions of entropy, information, and divergence, assuming the random
variables of interest are discrete or have densities with respect to Lebesgue measure.

Entropy: We begin with a central concept in information theory: the entropy. Let P be a distri-
bution on a finite (or countable) set X , and let p denote the probability mass function associated
with P . That is, if X is a random variable distributed according to P , then P (X = x) = p(x). The
entropy of X (or of P ) is defined as

H(X) := −
∑
x

p(x) log p(x).

10
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Because p(x) ≤ 1 for all x, it is clear that this quantity is positive. We will show later that if X
is finite, the maximum entropy distribution on X is the uniform distribution, setting p(x) = 1/|X |
for all x, which has entropy log(|X |).

Later in the class, we provide a number of operational interpretations of the entropy. The
most common interpretation—which forms the beginning of Shannon’s classical information the-
ory [126]—is via the source-coding theorem. We present Shannon’s source coding theorem in
Chapter 13, where we show that if we wish to encode a random variable X, distributed according
to P , with a k-ary string (i.e. each entry of the string takes on one of k values), then the minimal
expected length of the encoding is given by H(X) = −

∑
x p(x) logk p(x). Moreover, this is achiev-

able (to within a length of at most 1 symbol) by using Huffman codes (among many other types of
codes). As an example of this interpretation, we may consider encoding a random variable X with
equi-probable distribution on m items, which has H(X) = log(m). In base-2, this makes sense: we
simply assign an integer to each item and encode each integer with the natural (binary) integer
encoding of length dlogme.

We can also define the conditional entropy, which is the amount of information left in a random
variable after observing another. In particular, we define

H(X | Y = y) = −
∑
x

p(x | y) log p(x | y) and H(X | Y ) =
∑
y

p(y)H(X | Y = y),

where p(x | y) is the p.m.f. of X given that Y = y.
Let us now provide a few examples of the entropy of various discrete random variables

Example 2.1 (Uniform random variables): As we noted earlier, if a random variable X is
uniform on a set of size m, then H(X) = logm. 3

Example 2.2 (Bernoulli random variables): Let h2(p) = −p log p− (1− p) log(1− p) denote
the binary entropy, which is the entropy of a Bernoulli(p) random variable. 3

Example 2.3 (Geometric random variables): A random variable X is Geometric(p), for some
p ∈ [0, 1], if it is supported on {1, 2, . . .}, and P (X = k) = (1− p)k−1p; this is the probability
distribution of the number X of Bernoulli(p) trials until a single success. The entropy of such
a random variable is

H(X) = −
∞∑
k=1

(1− p)k−1p [(k − 1) log(1− p) + log p] = −
∞∑
k=0

(1− p)kp [k log(1− p) + log p] .

As
∑∞

k=0 α
k = 1

1−α and d
dα

1
1−α = 1

(1−α)2
=
∑∞

k=1 kα
k−1, we have

H(X) = −p log(1− p) ·
∞∑
k=1

k(1− p)k − p log p ·
∞∑
k=1

(1− p)k = −1− p
p

log(1− p)− (1− p) log p.

As p ↓ 0, we see that H(X) ↑ ∞. 3

Example 2.4 (A random variable with infinite entropy): While most “reasonable” discrete
random variables have finite entropy, it is possible to construct distributions with infinite
entropy. Indeed, let X have p.m.f. on {2, 3, . . .} defined by

p(k) =
A

k log2 k
where A−1 =

∞∑
k=2

1

k log2 k
<∞,

11
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the last sum finite as
∫∞

2
1

x logα xdx < ∞ if and only if α > 1: for α = 1, we have
∫ x
e

1
t log t =

log log x, while for α > 1, we have

d

dx
(log x)1−α = (1− α)

1

x logα x

so that
∫∞
e

1
t logα tdt = 1

e(1−α) . To see that the entropy is infinite, note that

H(X) = A
∑
k≥2

logA+ log k + 2 log log k

k log2 k
≥ A

∑
k≥2

log k

k log2 k
− C =∞,

where C is a numerical constant. 3

KL-divergence: Now we define two additional quantities, which are actually much more funda-
mental than entropy: they can always be defined for any distributions and any random variables,
as they measure distance between distributions. Entropy simply makes no sense for non-discrete
random variables, let alone random variables with continuous and discrete components, though it
proves useful for some of our arguments and interpretations.

Before defining these quantities, we recall the definition of a convex function f : Rk → R as any
bowl-shaped function, that is, one satisfying

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) (2.1.1)

for all λ ∈ [0, 1], all x, y. The function f is strictly convex if the convexity inequality (2.1.1) is
strict for λ ∈ (0, 1) and x 6= y. We recall a standard result:

Proposition 2.5 (Jensen’s inequality). Let f be convex. Then for any random variable X,

f(E[X]) ≤ E[f(X)].

Moreover, if f is strictly convex, then f(E[X]) < E[f(X)] unless X is constant.

Now we may define and provide a few properties of the KL-divergence. Let P and Q be
distributions defined on a discrete set X . The KL-divergence between them is

Dkl (P ||Q) :=
∑
x∈X

p(x) log
p(x)

q(x)
.

We observe immediately that Dkl (P ||Q) ≥ 0. To see this, we apply Jensen’s inequality (Proposi-
tion 2.5) to the function− log and the random variable q(X)/p(X), whereX is distributed according
to P :

Dkl (P ||Q) = −E
[
log

q(X)

p(X)

]
≥ − logE

[
q(X)

p(X)

]
= − log

(∑
x

p(x)
q(x)

p(x)

)
= − log(1) = 0.

Moreover, as log is strictly convex, we have Dkl (P ||Q) > 0 unless P = Q. Another consequence of
the positivity of the KL-divergence is that whenever the set X is finite with cardinality |X | < ∞,
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for any random variable X supported on X we have H(X) ≤ log |X |. Indeed, letting m = |X |, Q
be the uniform distribution on X so that q(x) = 1

m , and X have distribution P on X , we have

0 ≤ Dkl (P ||Q) =
∑
x

p(x) log
p(x)

q(x)
= −H(X)−

∑
x

p(x) log q(x) = −H(X) + logm, (2.1.2)

so that H(X) ≤ logm. Thus, the uniform distribution has the highest entropy over all distributions
on the set X .

Mutual information: Having defined KL-divergence, we may now describe the information
content between two random variables X and Y . The mutual information I(X;Y ) between X and
Y is the KL-divergence between their joint distribution and their products (marginal) distributions.
More mathematically,

I(X;Y ) :=
∑
x,y

p(x, y) log
p(x, y)

p(x)p(y)
. (2.1.3)

We can rewrite this in several ways. First, using Bayes’ rule, we have p(x, y)/p(y) = p(x | y), so

I(X;Y ) =
∑
x,y

p(y)p(x | y) log
p(x | y)

p(x)

= −
∑
x

∑
y

p(y)p(x | y) log p(x) +
∑
y

p(y)
∑
x

p(x | y) log p(x | y)

= H(X)−H(X | Y ).

Similarly, we have I(X;Y ) = H(Y ) −H(Y | X), so mutual information can be thought of as the
amount of entropy removed (on average) in X by observing Y . We may also think of mutual infor-
mation as measuring the similarity between the joint distribution of X and Y and their distribution
when they are treated as independent.

Comparing the definition (2.1.3) to that for KL-divergence, we see that if PXY is the joint
distribution of X and Y , while PX and PY are their marginal distributions (distributions when X
and Y are treated independently), then

I(X;Y ) = Dkl (PXY ||PX × PY ) ≥ 0.

Moreover, we have I(X;Y ) > 0 unless X and Y are independent.
As with entropy, we may also define the conditional information between X and Y given Z,

which is the mutual information between X and Y when Z is observed (on average). That is,

I(X;Y | Z) :=
∑
z

I(X;Y | Z = z)p(z) = H(X | Z)−H(X | Y,Z) = H(Y | Z)−H(Y | X,Z).

Entropies of continuous random variables For continuous random variables, we may define
an analogue of the entropy known as differential entropy, which for a random variable X with
density p is defined by

h(X) := −
∫
p(x) log p(x)dx. (2.1.4)

13
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Note that the differential entropy may be negative—it is no longer directly a measure of the number
of bits required to describe a random variable X (on average), as was the case for the entropy. We
can similarly define the conditional entropy

h(X | Y ) = −
∫
p(y)

∫
p(x | y) log p(x | y)dxdy.

We remark that the conditional differential entropy of X given Y for Y with arbitrary distribution—
so long as X has a density—is

h(X | Y ) = E
[
−
∫
p(x | Y ) log p(x | Y )dx

]
,

where p(x | y) denotes the conditional density of X when Y = y. The KL divergence between
distributions P and Q with densities p and q becomes

Dkl (P ||Q) =

∫
p(x) log

p(x)

q(x)
dx,

and similarly, we have the analogues of mutual information as

I(X;Y ) =

∫
p(x, y) log

p(x, y)

p(x)p(y)
dxdy = h(X)− h(X | Y ) = h(Y )− h(Y | X).

As we show in the next subsection, we can define the KL-divergence between arbitrary distributions
(and mutual information between arbitrary random variables) more generally without requiring
discrete or continuous distributions. Before investigating these issues, however, we present a few
examples. We also see immediately that for X uniform on a set [a, b], we have h(X) = log(b− a).

Example 2.6 (Entropy of normal random variables): The differential entropy (2.1.4) of a
normal random variable is straightforward to compute. Indeed, for X ∼ N(µ, σ2) we have
p(x) = 1√

2πσ2
exp(− 1

2σ2 (x− µ)2), so that

h(X) = −
∫
p(x)

[
1

2
log

1

2πσ2
− 1

2σ2
(x− µ)2

]
=

1

2
log(2πσ2) +

E[(X − µ)2]

2σ2
=

1

2
log(2πeσ2).

For a general multivariate Gaussian, where X ∼ N(µ,Σ) for a vector µ ∈ Rn and Σ � 0 with
density p(x) = 1

(2π)n/2
√

det(Σ)
exp(−1

2(x− µ)>Σ−1(x− µ)), we similarly have

h(X) =
1

2
E
[
n log(2π) + log det(Σ) + (X − µ)>Σ−1(X − µ)

]
=
n

2
log(2π) +

1

2
log det(Σ) +

1

2
tr(ΣΣ−1) =

n

2
log(2πe) +

1

2
log det(eΣ).

3

Continuing our examples with normal distributions, we may compute the divergence between
two multivariate Gaussian distributions:

Example 2.7 (Divergence between Gaussian distributions): Let P be the multivariate normal
N(µ1,Σ), and Q be the multivariate normal distribution with mean µ2 and identical covariance
Σ � 0. Then we have that

Dkl (P ||Q) =
1

2
(µ1 − µ2)>Σ−1(µ1 − µ2). (2.1.5)

We leave the computation of the identity (2.1.5) to the reader. 3
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An interesting consequence of Example 2.7 is that if a random vector X has a given covari-
ance Σ ∈ Rn×n, then the multivariate Gaussian with identical covariance has larger differential
entropy. Put another way, differential entropy for random variables with second moments is always
maximized by the Gaussian distribution.

Proposition 2.8. Let X be a random vector on Rn with a density, and assume that Cov(X) = Σ.
Then for Z ∼ N(0,Σ), we have

h(X) ≤ h(Z).

Proof Without loss of generality, we assume that X has mean 0. Let P be the distribution of
X with density p, and let Q be multivariate normal with mean 0 and covariance Σ; let Z be this
random variable. Then

Dkl (P ||Q) =

∫
p(x) log

p(x)

q(x)
dx = −h(X) +

∫
p(x)

[
n

2
log(2π)− 1

2
x>Σ−1x

]
dx

= −h(X) + h(Z),

because Z has the same covariance as X. As 0 ≤ Dkl (P ||Q), we have h(Z) ≥ h(X) as desired.

We remark in passing that the fact that Gaussian random variables have the largest entropy has
been used to prove stronger variants of the central limit theorem; see the original results of Barron
[17], as well as later quantitative results on the increase of entropy of normalized sums by Artstein
et al. [9] and Madiman and Barron [107].

2.1.2 Chain rules and related properties

We now illustrate several of the properties of entropy, KL divergence, and mutual information;
these allow easier calculations and analysis.

Chain rules: We begin by describing relationships between collections of random variables
X1, . . . , Xn and individual members of the collection. (Throughout, we use the notation Xj

i =
(Xi, Xi+1, . . . , Xj) to denote the sequence of random variables from indices i through j.)

For the entropy, we have the simplest chain rule:

H(X1, . . . , Xn) = H(X1) +H(X2 | X1) + . . .+H(Xn | Xn−1
1 ).

This follows from the standard decomposition of a probability distribution p(x, y) = p(x)p(y | x).
to see the chain rule, then, note that

H(X,Y ) = −
∑
x,y

p(x)p(y | x) log p(x)p(y | x)

= −
∑
x

p(x)
∑
y

p(y | x) log p(x)−
∑
x

p(x)
∑
y

p(y | x) log p(y | x) = H(X) +H(Y | X).

Now set X = Xn−1
1 , Y = Xn, and simply induct.

A related corollary of the definitions of mutual information is the well-known result that con-
ditioning reduces entropy :

H(X | Y ) ≤ H(X) because I(X;Y ) = H(X)−H(X | Y ) ≥ 0.

So on average, knowing about a variable Y can only decrease your uncertainty about X. That
conditioning reduces entropy for continuous random variables is also immediate, as for X continuous
we have I(X;Y ) = h(X)− h(X | Y ) ≥ 0, so that h(X) ≥ h(X | Y ).

15



Stanford Statistics 311/Electrical Engineering 377 John Duchi

Chain rules for information and divergence: As another immediate corollary to the chain
rule for entropy, we see that mutual information also obeys a chain rule:

I(X;Y n
1 ) =

n∑
i=1

I(X;Yi | Y i−1
1 ).

Indeed, we have

I(X;Y n
1 ) = H(Y n

1 )−H(Y n
1 | X) =

n∑
i=1

[
H(Yi | Y i−1

1 )−H(Yi | X,Y i−1
1 )

]
=

n∑
i=1

I(X;Yi | Y i−1
1 ).

The KL-divergence obeys similar chain rules, making mutual information and KL-divergence mea-
sures useful tools for evaluation of distances and relationships between groups of random variables.

As a second example, suppose that the distribution P = P1×P2×· · ·×Pn, and Q = Q1×· · ·×Qn,
that is, that P and Q are product distributions over independent random variables Xi ∼ Pi or
Xi ∼ Qi. Then we immediately have the tensorization identity

Dkl (P ||Q) = Dkl (P1 × · · · × Pn||Q1 × · · · ×Qn) =

n∑
i=1

Dkl (Pi||Qi) .

We remark in passing that these two identities hold for arbitrary distributions Pi and Qi or random
variables X,Y . As a final tensorization identiy, we consider a more general chain rule for KL-
divergences, which will frequently be useful. We abuse notation temporarily, and for random
variables X and Y with distributions P and Q, respectively, we denote

Dkl (X||Y ) := Dkl (P ||Q) .

In analogy to the entropy, we can also define the conditional KL divergence. Let X and Y have
distributions PX|z and PY |z conditioned on Z = z, respectively. Then we define

Dkl (X||Y | Z) = EZ [Dkl

(
PX|Z ||PY |Z

)
],

so that if Z is discrete we have Dkl (X||Y | Z) =
∑

z p(z)Dkl

(
PX|z||PY |z

)
. With this notation, we

have the chain rule

Dkl (X1, . . . , Xn||Y1, . . . , Yn) =
n∑
i=1

Dkl

(
Xi||Yi | Xi−1

1

)
, (2.1.6)

because (in the discrete case, which—as we discuss presently—is fully general for this purpose) for
distributions PXY and QXY we have

Dkl (PXY ||QXY ) =
∑
x,y

p(x, y) log
p(x, y)

q(x, y)
=
∑
x,y

p(x)p(y | x)

[
log

p(y | x)

q(y | x)
+ log

p(x)

q(x)

]
=
∑
x

p(x) log
p(x)

q(x)
+
∑
x

p(x)
∑
y

p(y | x) log
p(y | x)

q(y | x)
,

where the final equality uses that
∑

y p(y | x) = 1 for all x.
Expanding upon this, we give several tensorization identities, showing how to transform ques-

tions about the joint distribution of many random variables to simpler questions about their
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marginals. As a first example, we see that as a consequence of the fact that conditioning de-
creases entropy, we see that for any sequence of (discrete or continuous, as appropriate) random
variables, we have

H(X1, . . . , Xn) ≤ H(X1) + · · ·+H(Xn) and h(X1, . . . , Xn) ≤ h(X1) + . . .+ h(Xn).

Both equalities hold with equality if and only if X1, . . . , Xn are mutually independent. (The only
if follows because I(X;Y ) > 0 whenever X and Y are not independent, by Jensen’s inequality and
the fact that Dkl (P ||Q) > 0 unless P = Q.)

We return to information and divergence now. Suppose that random variables Yi are indepen-
dent conditional on X, meaning that

P (Y1 = y1, . . . , Yn = yn | X = x) = P (Y1 = y1 | X = x) · · ·P (Yn = yn | X = x).

Such scenarios are common—as we shall see—when we make multiple observations from a fixed
distribution parameterized by some X. Then we have the inequality

I(X;Y1, . . . , Yn) =

n∑
i=1

[H(Yi | Y i−1
1 )−H(Yi | X,Y i−1

1 )]

=

n∑
i=1

[H(Yi | Y i−1
1 )−H(Yi | X)] ≤

n∑
i=1

[H(Yi)−H(Yi | X)] =

n∑
i=1

I(X;Yi),

(2.1.7)

where the inequality follows because conditioning reduces entropy.

2.1.3 Data processing inequalities:

A standard problem in information theory (and statistical inference) is to understand the degrada-
tion of a signal after it is passed through some noisy channel (or observation process). The simplest
of such results, which we will use frequently, is that we can only lose information by adding noise.
In particular, assume we have the Markov chain

X → Y → Z.

Then we obtain the classical data processing inequality.

Proposition 2.9. With the above Markov chain, we have I(X;Z) ≤ I(X;Y ).

Proof We expand the mutual information I(X;Y,Z) in two ways:

I(X;Y, Z) = I(X;Z) + I(X;Y | Z)

= I(X;Y ) + I(X;Z | Y )︸ ︷︷ ︸
=0

,

where we note that the final equality follows because X is independent of Z given Y :

I(X;Z | Y ) = H(X | Y )−H(X | Y,Z) = H(X | Y )−H(X | Y ) = 0.

Since I(X;Y | Z) ≥ 0, this gives the result.
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There are related data processing inequalities for the KL-divergence—which we generalize in
the next section—as well. In this case, we may consider a simple Markov chain X → Z. If we
let P1 and P2 be distributions on X and Q1 and Q2 be the induced distributions on Z, that is,
Qi(A) =

∫
P(Z ∈ A | x)dPi(x), then we have

Dkl (Q1||Q2) ≤ Dkl (P1||P2) ,

the basic KL-divergence data processing inequality. A consequence of this is that, for any function
f and random variables X and Y on the same space, we have

Dkl (f(X)||f(Y )) ≤ Dkl (X||Y ) .

We explore these data processing inequalities more when we generalize KL-divergences in the next
section and in the exercises.

2.2 General divergence measures and definitions

Having given our basic definitions of mutual information and divergence, we now show how the
definitions of KL-divergence and mutual information extend to arbitrary distributions P and Q
and arbitrary sets X . This requires a bit of setup, including defining set algebras (which, we will
see, simply correspond to quantization of the set X ), but allows us to define divergences in full
generality.

2.2.1 Partitions, algebras, and quantizers

Let X be an arbitrary space. A quantizer on X is any function that maps X to a finite collection
of integers. That is, fixing m < ∞, a quantizer is any function q : X → {1, . . . ,m}. In particular,
a quantizer q partitions the space X into the subsets of x ∈ X for which q(x) = i. A related
notion—we will see the precise relationship presently—is that of an algebra of sets on X . We say
that a collection of sets A is an algebra on X if the following are true:

1. The set X ∈ A.

2. The collection of sets A is closed under finite set operations: union, intersection, and com-
plementation. That is, A,B ∈ A implies that Ac ∈ A, A ∩B ∈ A, and A ∪B ∈ A.

There is a 1-to-1 correspondence between quantizers—and their associated partitions of the set
X—and finite algebras on a set X , which we discuss briefly.1 It should be clear that there is a
one-to-one correspondence between finite partitions of the set X and quantizers q, so we must argue
that finite partitions of X are in one-to-one correspondence with finite algebras defined over X .

In one direction, we may consider a quantizer q : X → {1, . . . ,m}. Let the sets A1, . . . , Am
be the partition associated with q, that is, for x ∈ Ai we have q(x) = i, or Ai = q−1({i}). Then
we may define an algebra Aq as the collection of all finite set operations performed on A1, . . . , Am
(note that this is a finite collection, as finite set operations performed on the partition A1, . . . , Am
induce only a finite collection of sets).

For the other direction, consider a finite algebra A over the set X . We can then construct a
quantizer qA that corresponds to this algebra. To do so, we define an atom of A as any non-empty
set A ∈ A such that if B ⊂ A and B ∈ A, then B = A or B = ∅. That is, the atoms of A are the
“smallest” sets in A. We claim there is a unique partition of X with atomic sets from A; we prove
this inductively.

1Pedantically, this one-to-one correspondence holds up to permutations of the partition induced by the quantizer.
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Base case: There is at least 1 atomic set, as A is finite; call it A1.

Induction step: Assume we have atomic sets A1, . . . , Ak ∈ A. Let B = (A1 ∪ · · · ∪Ak)c be their
complement, which we assume is non-empty (otherwise we have a partition of X into atomic sets).
The complement B is either atomic, in which case the sets {A1, A2, . . . , Ak, B} are a partition of
X consisting of atoms of A, or B is not atomic. If B is not atomic, consider all the sets of the form
A ∩ B for A ∈ A. Each of these belongs to A, and at least one of them is atomic, as there is a
finite number of them. This means there is a non-empty set Ak+1 ⊂ B such that Ak+1 is atomic.

By repeating this induction, which must stop at some finite index m as A is finite, we construct
a collection A1, . . . , Am of disjoint atomic sets in A for which and ∪iAi = X . (The uniqueness is
an exercise for the reader.) Thus we may define the quantizer qA via

qA(x) = i when x ∈ Ai.

2.2.2 KL-divergence

In this section, we present the general definition of a KL-divergence, which holds for any pair of
distributions. Let P and Q be distributions on a space X . Now, let A be a finite algebra on X
(as in the previous section, this is equivalent to picking a partition of X and then constructing the
associated algebra), and assume that its atoms are atoms(A). The KL-divergence between P and
Q conditioned on A is

Dkl (P ||Q | A) :=
∑

A∈atoms(A)

P (A) log
P (A)

Q(A)
.

That is, we simply sum over the partition of X . Another way to write this is as follows. Let
q : X → {1, . . . ,m} be a quantizer, and define the sets Ai = q−1({i}) to be the pre-images of each
i (i.e. the different quantization regions, or the partition of X that q induces). Then the quantized
KL-divergence between P and Q is

Dkl (P ||Q | q) :=

m∑
i=1

P (Ai) log
P (Ai)

Q(Ai)
.

We may now give the fully general definition of KL-divergence: the KL-divergence between P
and Q is defined as

Dkl (P ||Q) := sup {Dkl (P ||Q | A) such that A is a finite algebra on X}
= sup {Dkl (P ||Q | q) such that q quantizes X} .

(2.2.1)

This also gives a rigorous definition of mutual information. Indeed, if X and Y are random variables
with joint distribution PXY and marginal distributions PX and PY , we simply define

I(X;Y ) = Dkl (PXY ||PX × PY ) .

When P and Q have densities p and q, the definition (2.2.1) reduces to

Dkl (P ||Q) =

∫
R
p(x) log

p(x)

q(x)
dx,
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while if P and Q both have probability mass functions p and q, then—as we see in Exercise 2.6—the
definition (2.2.1) is equivalent to

Dkl (P ||Q) =
∑
x

p(x) log
p(x)

q(x)
,

precisely as in the discrete case.
We remark in passing that if the set X is a product space, meaning that X = X1×X2×· · ·×Xn

for some n < ∞ (this is the case for mutual information, for example), then we may assume our
quantizer always quantizes sets of the form A = A1 × A2 × · · · × An, that is, Cartesian products.
Written differently, when we consider algebras on X , the atoms of the algebra may be assumed to be
Cartesian products of sets, and our partitions of X can always be taken as Cartesian products. (See
Gray [74, Chapter 5].) Written slightly differently, if P and Q are distributions on X = X1×· · ·×Xn
and qi is a quantizer for the set Xi (inducing the partition Ai1, . . . , A

i
mi of Xi) we may define

Dkl

(
P ||Q | q1, . . . , qn

)
=

∑
j1,...,jn

P (A1
j1 ×A

2
j2 × · · · ×A

n
jn) log

P (A1
j1
×A2

j2
× · · · ×Anjn)

Q(A1
j1
×A2

j2
× · · · ×Anjn)

.

Then the general definition (2.2.1) of KL-divergence specializes to

Dkl (P ||Q) = sup
{
Dkl

(
P ||Q | q1, . . . , qn

)
such that qi quantizes Xi

}
.

So we only need consider “rectangular” sets in the definitions of KL-divergence.

Measure-theoretic definition of KL-divergence If you have never seen measure theory be-
fore, skim this section; while the notation may be somewhat intimidating, it is fine to always
consider only continuous or fully discrete distributions. We will describe an interpretation that will
mean for our purposes that one never needs to really think about measure theoretic issues.

The general definition (2.2.1) of KL-divergence is equivalent to the following. Let µ be a measure
on X , and assume that P and Q are absolutely continuous with respect to µ, with densities p and
q, respectively. (For example, take µ = P +Q.) Then

Dkl (P ||Q) =

∫
X
p(x) log

p(x)

q(x)
dµ(x). (2.2.2)

The proof of this fact is somewhat involved, requiring the technology of Lebesgue integration. (See
Gray [74, Chapter 5].)

For those who have not seen measure theory, the interpretation of the equality (2.2.2) should be
as follows. When integrating a function f(x), replace

∫
f(x)dµ(x) with one of two pairs of symbols:

one may simply think of dµ(x) as dx, so that we are performing standard integration
∫
f(x)dx, or

one should think of the integral operation
∫
f(x)dµ(x) as summing the argument of the integral, so

dµ(x) = 1 and
∫
f(x)dµ(x) =

∑
x f(x). (This corresponds to µ being “counting measure” on X .)

2.2.3 f-divergences

A more general notion of divergence is the so-called f -divergence, or Ali-Silvey divergence [4, 47]
(see also the alternate interpretations in the article by Liese and Vajda [105]). Here, the definition
is as follows. Let P and Q be probability distributions on the set X , and let f : R+ → R be a
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convex function satisfying f(1) = 0. If X is a discrete set, then the f -divergence between P and Q
is

Df (P ||Q) :=
∑
x

q(x)f

(
p(x)

q(x)

)
.

More generally, for any set X and a quantizer q : X → {1, . . . ,m}, letting Ai = q−1({i}) = {x ∈
X | q(x) = i} be the partition the quantizer induces, we can define the quantized divergence

Df (P ||Q | q) =
m∑
i=1

Q(Ai)f

(
P (Ai)

Q(Ai)

)
,

and the general definition of an f divergence is (in analogy with the definition (2.2.1) of general
KL divergences)

Df (P ||Q) := sup {Df (P ||Q | q) such that q quantizes X} . (2.2.3)

The definition (2.2.3) shows that, any time we have computations involving f -divergences—such
as KL-divergence or mutual information—it is no loss of generality, when performing the compu-
tations, to assume that all distributions have finite discrete support. There is a measure-theoretic
version of the definition (2.2.3) which is frequently easier to use. Assume w.l.o.g. that P and Q are
absolutely continuous with respect to the base measure µ. The f divergence between P and Q is
then

Df (P ||Q) :=

∫
X
q(x)f

(
p(x)

q(x)

)
dµ(x). (2.2.4)

This definition, it turns out, is not quite as general as we would like—in particular, it is unclear
how we should define the integral for points x such that q(x) = 0. With that in mind, we recall
that the perspective transform (see Appendices A.1.1 and A.2.3) of a function f : R→ R is defined
by pers(f)(t, u) = uf(t/u) if u > 0 and by +∞ if u ≤ 0. This function is convex in its arguments
(Proposition A.20). In fact, this is not quite enough for the fully correct definition. The closure of
a convex function f is cl f(x) = sup{`(x) | ` ≤ f, ` linear}, the supremum over all linear functions
that globally lower bound f . Then [84, Proposition IV.2.2.2] the closer of pers(f) is defined, for
any t′ ∈ int dom f , by

cl pers(f)(t, u) =


uf(t/u) if u > 0

limα↓0 αf(t′ − t+ t/α) if u = 0

+∞ if u < 0.

(The choice of t′ does not affect the definition.) Then the fully general formula expressing the
f -divergence is

Df (P ||Q) =

∫
X

cl pers(f)(p(x), q(x))dµ(x). (2.2.5)

This is what we mean by equation (2.2.4), which we use without comment.
In the exercises, we explore several properties of f -divergences, including the quantized repre-

sentation (2.2.3), showing different data processing inequalities and orderings of quantizers based
on the fineness of their induced partitions. Broadly, f -divergences satisfy essentially the same prop-
erties as KL-divergence, such as data-processing inequalities, and they provide a generalization of
mutual information. We explore f -divergences from a non-standard perspective later—they are
important both for optimality in estimation and related to consistency and prediction problems, as
we discuss in Chapter 18.
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Examples We give three examples of f -divergences here; in Section 7.2.2 we provide a few
examples of their uses as well as providing a few natural inequalities between them.

1. KL-divergence: by taking f(t) = t log t, which is convex and satisfies f(1) = 0, we obtain
Df (P ||Q) = Dkl (P ||Q).

2. KL-divergence, reversed: by taking f(t) = − log t, we obtain Df (P ||Q) = Dkl (Q||P ).

3. The total variation distance between probability distributions P and Q defined on a set X is
defined as the maximum difference between probabilities they assign on subsets of X :

‖P −Q‖TV := sup
A⊂X

|P (A)−Q(A)| . (2.2.6)

Note that (by considering compliments P (Ac) = 1−P (A)) the absolute value on the right hand
side is unnecessary. The total variation distance, as we shall see later in the course, is very
important for verifying the optimality of different tests, and appears in the measurement of
difficulty of solving hypothesis testing problems. An important inequality, known as Pinsker’s
inequality, is that

‖P −Q‖2TV ≤
1

2
Dkl (P ||Q) . (2.2.7)

By taking f(t) = 1
2 |t− 1|, we obtain the total variation distance. Indeed, we have

Df (P ||Q) =
1

2

∫ ∣∣∣∣p(x)

q(x)
− 1

∣∣∣∣ q(x)dµ(x) =
1

2

∫
|p(x)− q(x)|dµ(x)

=
1

2

∫
x:p(x)>q(x)

[p(x)− q(x)] dµ(x) +
1

2

∫
x:q(x)>p(x)

[q(x)− p(x)] dµ(x)

=
1

2
sup
A⊂X

[P (A)−Q(A)] +
1

2
sup
A⊂X

[Q(A)− P (A)] = ‖P −Q‖TV .

4. The Hellinger distance between probability distirbutions P and Q defined on a set X is
generated by the function f(t) = (

√
t− 1)2 = t− 2

√
t+ 1. The Hellinger distance is then

dhel(P,Q)2 :=

∫
(
√
p(x)−

√
q(x))2dµ(x). (2.2.8)

5. The χ2-divergence is generated by taking f(t) = 1
2(t− 1)2, and between distributions P and

Q is given by

Dχ2 (P ||Q) =
1

2

∫ (
p(x)

q(x)
− 1

)2

q(x)dµ(x). (2.2.9)

There are a variety of inequalities relating different f -divergences, which are often convenient for
analyzing the properties of product distributions (as will become apparent in Chapter 7. We enu-
merate a few of the most important inequalities here, which provide inequalities relating variation
distance to the others.

Proposition 2.10. The total variation distance satisfies the following relationships:

(a) For the Hellinger distance,

1

2
dhel(P,Q)2 ≤ ‖P −Q‖TV ≤ dhel(P,Q)

√
1− dhel(P,Q)2/4.
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(b) Pinsker’s inequality: for any distributions P , Q,

‖P −Q‖2TV ≤
1

2
Dkl (P ||Q) .

We provide the proof of Proposition 2.10 in Section 2.4.1. We also have the following bounds on
the KL-divergence in terms of the χ2-divergence.

Proposition 2.11. For any distributions P,Q,

Dkl (P ||Q) ≤ log(1 +Dχ2 (P ||Q)) ≤ Dχ2 (P ||Q) .

Proof By Jensen’s inequality, we have

Dkl (P ||Q) ≤ log

∫
dP 2

dQ
= log(1 +Dχ2 (P ||Q)).

The second inequality is immediate as log(1 + t) ≤ t for all t > −1.

It is also possible to relate mutual information between distributions to f -divergences, and even
to bound the mutual information above and below by the Hellinger distance for certain problems. In
this case, we consider the following situation: let V ∈ {0, 1} uniformly at random, and conditional
on V = v, draw X ∼ Pv for some distribution Pv on a space X . Then we have that

I(X;V ) =
1

2
Dkl

(
P0||P

)
+

1

2
Dkl

(
P1||P

)
where P = 1

2P0 + 1
2P1. As a consequence, we also have

I(X;V ) =
1

2
Df (P0||P1) +

1

2
Df (P1||P0) ,

where f(t) = −t log( 1
2t + 1

2) = t log 2t
t+1 , so that the mutual information is a particular f -divergence.

This form—as we see in the later chapters—is frequently convenient because it gives an object
with similar tensorization properties to KL-divergence while enjoying the boundedness properties
of Hellinger and variation distances. The following proposition capture the latter properties.

Proposition 2.12. Let (X,V ) be distributed as above. Then

d2
hel(P0, P1) ≤ I(X;V ) ≤ 2d2

hel(P0, P1).

JCD Comment: Complete this proof

2.2.4 Properties of divergence measures

f -divergences satisfy a number of very useful properties, which we use repeatedly throughout the
lectures. As the KL-divergence is an f -divergence, it of course satisfies these conditions; however,
we state them in fuller generality, treating the KL-divergence results as special cases and corollaries.

We begin by exhibiting the general data processing properties and convexity properties of f -
divergences, each of which specializes to KL divergence. We leave the proof of each of these as
exercises. First, we show that f -divergences are jointly convex in their arguments.
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Proposition 2.13. Let P1, P2, Q1, Q2 be distributions on a set X and f : R+ → R be convex. Then
for any λ ∈ [0, 1],

Df (λP1 + (1− λ)P2||λQ1 + (1− λ)Q2) ≤ λDf (P1||Q1) + (1− λ)Df (P2||Q2) .

The proof of this proposition we leave as an exercise (Q. 2.11), which we treat as a consequence
of the more general “log-sum” like inequalities of Question 2.8. It is, however, an immediate
consequence of the fully specified definition (2.2.5) of an f -divergence, because pers(f) is jointly
convex. As an immediate corollary, we see that the same result is true for KL-divergence as well.

Corollary 2.14. The KL-divergence Dkl (P ||Q) is jointly convex in its arguments P and Q.

We can also provide more general data processing inequalities for f -divergences, paralleling
those for the KL-divergence. In this case, we consider random variables X and Z on spaces X
and Z, respectively, and a Markov transition kernel K giving the Markov chain X → Z. That
is, K(· | x) is a probability distribution on Z for each x ∈ X , and conditioned on X = x, Z has
distribution K(· | x) so that K(A | x) = P(Z ∈ A | X = x). Certainly, this includes the situation
when Z = φ(X) for some function φ, and more generally when Z = φ(X,U) for a function φ and
some additional randomness U . For a distribution P on X, we then define the marginals

KP (A) :=

∫
X
K(A, x)dP (x).

We then have the following proposition.

Proposition 2.15. Let P and Q be distributions on X and let K be any Markov kernel. Then

Df (KP ||KQ) ≤ Df (P ||Q) .

The proof of this proposition is Question 2.10.
As a corollary, we obtain the following data processing inequality for KL-divergences, where we

abuse notation to write Dkl (X||Y ) = Dkl (P ||Q) for random variables X ∼ P and Y ∼ Q.

Corollary 2.16. Let X,Y ∈ X be random variables, let U ∈ U be independent of X and Y , and
let φ : X × U → Z for some spaces X ,U ,Z. Then

Dkl (φ(X,U)||φ(Y, U)) ≤ Dkl (X||Y ) .

Thus, further processing of random variables can only bring them “closer” in the space of distribu-
tions; downstream processing of signals cannot make them further apart as distributions.

2.3 First steps into optimal procedures: testing inequalities

As noted in the introduction, a central benefit of the information theoretic tools we explore is that
they allow us to certify the optimality of procedures—that no other procedure could (substantially)
improve upon the one at hand. The main tools for these certifications are often inequalities gov-
erning the best possible behavior of a variety of statistical tests. Roughly, we put ourselves in the
following scenario: nature chooses one of a possible set of (say) k worlds, indexed by probabil-
ity distributions P1, P2, . . . , Pk, and conditional on nature’s choice of the world—the distribution
P ? ∈ {P1, . . . , Pk} chosen—we observe data X drawn from P ?. Intuitively, it will be difficult to
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decide which distribution Pi is the true P ? if all the distributions are similar—the divergence be-
tween the Pi is small, or the information between X and P ? is negligible—and easy if the distances
between the distributions Pi are large. With this outline in mind, we present two inequalities, and
first examples of their application, to make concrete these connections to the notions of information
and divergence defined in this section.

2.3.1 Le Cam’s inequality and binary hypothesis testing

The simplest instantiation of the above setting is the case when there are only two possible dis-
tributions, P1 and P2, and our goal is to make a decision on whether P1 or P2 is the distribution
generating data we observe. Concretely, suppose that nature chooses one of the distributions P1

or P2 at random, and let V ∈ {1, 2} index this choice. Conditional on V = v, we then observe a
sample X drawn from Pv. Denoting by P the joint distribution of V and X, we have for any test
Ψ : X → {1, 2} that the probability of error is then

P(Ψ(X) 6= V ) =
1

2
P1(Ψ(X) 6= 1) +

1

2
P2(Ψ(X) 6= 2).

We can give an exact expression for the minimal possible error in the above hypothesis test.
Indeed, a standard result of Le Cam (see [101, 139, Lemma 1]) is the following variational representa-
tion of the total variation distance (2.2.6), which is the f -divergence associated with f(t) = 1

2 |t−1|,
as a function of testing error.

Proposition 2.17. Let X be an arbitrary set. For any distributions P1 and P2 on X , we have

inf
Ψ
{P1(Ψ(X) 6= 1) + P2(Ψ(X) 6= 2)} = 1− ‖P1 − P2‖TV ,

where the infimum is taken over all tests Ψ : X → {1, 2}.

Proof Any test Ψ : X → {1, 2} has an acceptance region, call it A ⊂ X , where it outputs 1 and
a region Ac where it outputs 2.

P1(Ψ 6= 1) + P2(Ψ 6= 2) = P1(Ac) + P2(A) = 1− P1(A) + P2(A).

Taking an infimum over such acceptance regions, we have

inf
Ψ
{P1(Ψ 6= 1) + P2(Ψ 6= 2)} = inf

A⊂X
{1− (P1(A)− P2(A))} = 1− sup

A⊂X
(P1(A)− P2(A)),

which yields the total variation distance as desired.

In the two-hypothesis case, we also know that the optimal test, by the Neyman-Pearson lemma,
is a likelihood ratio test. That is, assuming that P1 and P2 have densities p1 and p2, the optimal
test is of the form

Ψ(X) =

{
1 if p1(X)

p2(X) ≥ t
2 if p1(X)

p2(X) < t

for some threshold t ≥ 0. In the case that the prior probabilities on P1 and P2 are each 1
2 , then

t = 1 is optimal.
We give one example application of Proposition 2.17 to the problem of testing a normal mean.
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Example 2.18 (Testing a normal mean): Suppose we observe X1, . . . , Xn
iid∼ P for P = P1

or P = P2, where Pv is the normal distribution N(µv, σ
2), where µ1 6= µ2. We would like to

understand the sample size n necessary to guarantee that no test can have small error, that
is, say, that

inf
Ψ
{P1(Ψ(X1, . . . , Xn) 6= 1) + P2(Ψ(X1, . . . , Xn) 6= 2)} ≥ 1

2
.

By Proposition 2.17, we have that

inf
Ψ
{P1(Ψ(X1, . . . , Xn) 6= 1) + P2(Ψ(X1, . . . , Xn) 6= 2)} ≥ 1− ‖Pn1 − Pn2 ‖TV ,

where Pnv denotes the n-fold product of Pv, that is, the distribution of X1, . . . , Xn
iid∼ Pv.

The interaction between total variation distance and product distributions is somewhat subtle,
so it is often advisable to use a divergence measure more attuned to the i.i.d. nature of the sam-
pling scheme. Two such measures are the KL-divergence and Hellinger distance, both of which
we explore in the coming chapters. With that in mind, we apply Pinsker’s inequality (2.2.7)
to see that ‖Pn1 − Pn2 ‖

2
TV ≤

1
2Dkl (Pn1 ||Pn2 ) = n

2Dkl (P1||P2), which implies that

1− ‖Pn1 − Pn2 ‖TV ≥ 1−
√
n

2
Dkl (P1||P2)

1
2 = 1−

√
n

2

(
1

2σ2
(µ1 − µ2)2

) 1
2

= 1−
√
n

2

|µ1 − µ2|
σ

.

In particular, if n ≤ σ2

(µ1−µ2)2
, then we have our desired lower bound of 1

2 .

Conversely, a calculation yields that n ≥ Cσ2

(µ1−µ2)2
, for some numerical constant C ≥ 1, implies

small probability of error. We leave this calculation to the reader. 3

2.3.2 Fano’s inequality and multiple hypothesis testing

There are of course situations in which we do not wish to simply test two hypotheses, but have
multiple hypotheses present. In such situations, Fano’s inequality, which we present shortly, is
the most common tool for proving fundamental limits, lower bounds on probability of error, and
converses (to results on achievability of some performance level) in information theroy. We write
this section in terms of general random variables, ignoring the precise setting of selecting an index
in a family of distributions, though that is implicit in what we do.

Let X be a random variable taking values in a finite set X , and assume that we observe a
(different) random variable Y , and then must estimate or guess the true value of X̂. That is, we
have the Markov chain

X → Y → X̂,

and we wish to provide lower bounds on the probability of error—that is, that X̂ 6= X. If we let
the function h2(p) = −p log p− (1− p) log(1− p) denote the binary entropy (entropy of a Bernoulli
random variable with parameter p), Fano’s inequality takes the following form [e.g. 46, Chapter 2]:

Proposition 2.19 (Fano inequality). For any Markov chain X → Y → X̂, we have

h2(P(X̂ 6= X)) + P(X̂ 6= X) log(|X | − 1) ≥ H(X | X̂). (2.3.1)

Proof This proof follows by expanding an entropy functional in two different ways. Let E be
the indicator for the event that X̂ 6= X, that is, E = 1 if X̂ 6= X and is 0 otherwise. Then we have

H(X,E | X̂) = H(X | E, X̂) +H(E | X̂)

= P(E = 1)H(X | E = 1, X̂) + P(E = 0)H(X | E = 0, X̂)︸ ︷︷ ︸
=0

+H(E | X̂),
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where the zero follows because given there is no error, X has no variability given X̂. Expanding
the entropy by the chain rule in a different order, we have

H(X,E | X̂) = H(X | X̂) +H(E | X̂,X)︸ ︷︷ ︸
=0

,

because E is perfectly predicted by X̂ and X. Combining these equalities, we have

H(X | X̂) = H(X,E | X̂) = P(E = 1)H(X | E = 1, X̂) +H(E | X).

Noting that H(E | X) ≤ H(E) = h2(P(E = 1)), as conditioning reduces entropy, and that
H(X | E = 1, X̂) ≤ log(|X | − 1), as X can take on at most |X | − 1 values when there is an error,
completes the proof.

We can rewrite Proposition 2.19 in a convenient way when X is uniform in X . Indeed, by
definition of the mutual information, we have I(X; X̂) = H(X) − H(X | X̂), so Proposition 7.8
implies that in the canonical hypothesis testing problem from Section 7.2.1, we have

Corollary 2.20. Assume that X is uniform on X . For any Markov chain X → Y → X̂,

P(X̂ 6= X) ≥ 1− I(X;Y ) + log 2

log(|X |)
. (2.3.2)

Proof Let Perror = P(X 6= X̂) denote the probability of error. Noting that h2(p) ≤ log 2 for any
p ∈ [0, 1] (recall inequality (2.1.2), that is, that uniform random variables maximize entropy), then
using Proposition 7.8, we have

log 2 + Perror log(|X |) ≥ h2(Perror) + Perror log(|X | − 1)
(i)

≥ H(X | X̂)
(ii)
= H(X)− I(X; X̂).

Here step (i) uses Proposition 2.19 and step (ii) uses the definition of mutual information, that
I(X; X̂) = H(X) − H(X | X̂). The data processing inequality implies that I(X; X̂) ≤ I(X;Y ),
and using H(X) = log(|X |) completes the proof.

In particular, Corollary 2.20 shows that when X is chosen uniformly at random and we observe
Y , we have

inf
Ψ

P(Ψ(Y ) 6= X) ≥ 1− I(X;Y ) + log 2

log |X |
,

where the infimum is taken over all testing procedures Ψ. Some interpretation of this quantity
is helpful. If we think roughly of the number of bits it takes to describe a variable X uniformly
chosen from X , then we expect that log2 |X | bits are necessary (and sufficient). Thus, until we
collect enough information that I(X;Y ) ≈ log |X |, so that I(X;Y )/ log |X | ≈ 1, we are unlikely to
be unable to identify the variable X with any substantial probability. So we must collect enough
bits to actually discover X.

Example 2.21 (20 questions game): In the 20 questions game—a standard children’s game—
there are two players, the “chooser” and the “guesser,” and an agreed upon universe X . The
chooser picks an element x ∈ X , and the guesser’s goal is to find x by using a series of yes/no
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questions about x. We consider optimal strategies for each player in this game, assuming that
X is finite and letting m = |X | be the universe size for shorthand.
For the guesser, it is clear that at most dlog2me questions are necessary to guess the item
X that the chooser has picked—at each round of the game, the guesser asks a question that
eliminates half of the remaining possible items. Indeed, let us assume that m = 2l for some
l ∈ N; if not, the guesser can always make her task more difficult by increasing the size of X
until it is a power of 2. Thus, after k rounds, there are m2−k items left, and we have

m

(
1

2

)k
≤ 1 if and only if k ≥ log2m.

For the converse—the chooser’s strategy—let Y1, Y2, . . . , Yk be the sequence of yes/no answers
given to the guesser. Assume that the chooser picks X uniformly at random in X . Then Fano’s
inequality (2.3.2) implies that for the guess X̂ the guesser makes,

P(X̂ 6= X) ≥ 1− I(X;Y1, . . . , Yk) + log 2

logm
.

By the chain rule for mutual information, we have

I(X;Y1, . . . , Yk) =
k∑
i=1

I(X;Yi | Y1:i−1) =
k∑
i=1

H(Yi | Y1:i−1)−H(Yi | Y1:i−1, X) ≤
k∑
i=1

H(Yi).

As the answers Yi are yes/no, we have H(Yi) ≤ log 2, so that I(X;Y1:k) ≤ k log 2. Thus we
find

P(X̂ 6= X) ≥ 1− (k + 1) log 2

logm
=

log2m− 1

log2m
− k

log2m
,

so that we the guesser must have k ≥ log2(m/2) to be guaranteed that she will make no
mistakes. 3

2.4 Deferred proofs

2.4.1 Proof of Proposition 2.10

For part (a), we begin with the upper bound. We have by Hölder’s inequality that∫
|p(x)− q(x)|dµ(x) =

∫
|
√
p(x)−

√
q(x)| · |

√
p(x) +

√
q(x)|dµ(x)

≤
(∫

(
√
p(x)−

√
q(x))2dµ(x)

) 1
2
(∫

(
√
p(x) +

√
q(x))2dµ(x)

) 1
2

= dhel(P,Q)

(
2 +

∫ √
p(x)q(x)dµ(x)

) 1
2

.

But of course, we have dhel(P,Q)2 = 2−
∫ √

p(x)q(x)dµ(x), so this implies∫
|p(x)− q(x)|dµ(x) ≤ dhel(P,Q)(4− dhel(P,Q)2)

1
2 .
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Dividing both sides by 2 gives the upper bound on ‖P −Q‖TV. For the lower bound on total
variation, note that for any a, b ∈ R+, we have a + b − 2

√
ab ≤ |a − b| (check the cases a > b and

a < b separately); thus

dhel(P,Q)2 =

∫ [
p(x) + q(x)− 2

√
p(x)q(x)

]
dµ(x) ≤

∫
|p(x)− q(x)|dµ(x).

For part (b) we present a proof based on the Cauchy-Schwarz inequality, which differs from
standard arguments [46, 132]. Using the definition (2.2.3) (or (2.2.1)), we may assume without loss
of generality that P and Q are finitely supported, say with p.m.f.s p1, . . . , pm and q1, . . . , qm. Define
the function h(p) =

∑m
i=1 pi log pi. Then showing that Dkl (P ||Q) ≥ 2 ‖P −Q‖2TV = 1

2 ‖p− q‖
2
1 is

equivalent to showing that

h(p) ≥ h(q) + 〈∇h(q), p− q〉+
1

2
‖p− q‖21 , (2.4.1)

because by inspection h(p)−h(q)−〈∇h(q), p−q〉 =
∑

i pi log pi
qi

. We do this via a Taylor expansion:
we have

∇h(p) = [log pi + 1]mi=1 and ∇2h(p) = diag([1/pi]
m
i=1).

By Taylor’s theorem, there is some p̃ = (1− t)p+ tq, where t ∈ [0, 1], such that

h(p) = h(q) + 〈∇h(q), p− q〉+
1

2
〈p− q,∇2h(p̃)(p− q)〉.

But looking at the final quadratic, we have for any vector v and any p ≥ 0 satisfying
∑

i pi = 1,

〈v,∇2h(p̃)v〉 =
m∑
i=1

v2
i

pi
= ‖p‖1

m∑
i=1

v2
i

pi
≥
( m∑
i=1

√
pi
|vi|√
pi

)2

= ‖v‖21 ,

where the inequality follows from Cauchy-Schwarz applied to the vectors [
√
pi]i and [|vi|/

√
pi]i.

Thus inequality (2.4.1) holds.

2.5 Bibliography

The material in this section of the lecture notes is more or less standard. For all of our treatment of
mutual information, entropy, and KL-divergence in the discrete case, Cover and Thomas provide an
essentially complete treatment in Chapter 2 of their book [46]. Gray [74] provides a more advanced
(measure-theoretic) version of these results, with Chapter 5 covering most of our results (or Chapter
7 in the newer addition of the same book).

The f -divergence was independently discovered by Ali and Silvey [4] and Csiszár [47], and is
consequently sometimes called an Ali-Silvey divergence or Csiszár divergence. Liese and Vajda [105]
provide a survey of f -divergences and their relationships with different statistical concepts (taking
a Bayesian point of view), and various authors have extended the pairwise divergence measures
to divergence measures between multiple distributions [78], making connections to experimental
design and classification [71, 59], which we investigate later in the lectures. For a proof that
equality (2.2.4) is equivalent to the definition (2.2.3) with the appropriate closure operations, see
the paper [59, Proposition 1].
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2.6 Exercises

Our first few questions investigate properties of a divergence between distributions that is weaker
than the KL-divergence, but is intimately related to optimal testing. Let P1 and P2 be arbitrary
distributions on a space X . The total variation distance between P1 and P2 is defined as

‖P1 − P2‖TV := sup
A⊂X

|P1(A)− P2(A)| .

Question 2.1: Prove the following identities about total variation. Throughout, let P1 and P2

have densities p1 and p2 on a (common) set X .

(a) 2 ‖P1 − P2‖TV =
∫
|p1(x)− p2(x)|dx.

(b) For functions f : X → R, define the supremum norm ‖f‖∞ = supx∈X |f(x)|. Show that
2 ‖P1 − P2‖TV = sup‖f‖∞≤1

∫
X f(x)(p1(x)− p2(x))dx.

(c) ‖P1 − P2‖TV =
∫

max{p1(x), p2(x)}dx− 1.

(d) ‖P1 − P2‖TV = 1−
∫

min{p1(x), p2(x)}dx.

(e) For functions f, g : X → R,

inf

{∫
f(x)p1(x)dx+

∫
g(x)p2(x)dx : f + g ≥ 1, f ≥ 0, g ≥ 0

}
= 1− ‖P1 − P2‖TV .

Question 2.2 (Divergence between multivariate normal distributions): Let P1 be N(θ1,Σ) and
P2 be N(θ2,Σ), where Σ � 0 is a positive definite matrix. What is Dkl (P1||P2)?

Question 2.3 (The optimal test between distributions): Prove Le-Cam’s inequality: for any
function ψ with domψ ⊃ X and any distributions P1, P2,

P1(ψ(X) 6= 1) + P2(ψ(X) 6= 2) ≥ 1− ‖P1 − P2‖TV .

Thus, the sum of the probabilities of error in a hypothesis testing problem, where based on a sample
X we must decide whether P1 or P2 is more likely, has value at least 1 − ‖P1 − P2‖TV. Given P1

and P2 is this risk attainable?

Question 2.4: A random variable X has Laplace(λ, µ) distribution if it has density p(x) =
λ
2 exp(−λ|x−µ|). Consider the hypothesis test of P1 versus P2, whereX has distribution Laplace(λ, µ1)
under P1 and distribution Laplace(λ, µ2) under P2, where µ1 < µ2. Show that the minimal value
over all tests ψ of P1 versus P2 is

inf
ψ

{
P1(ψ(X) 6= 1) + P2(ψ(X) 6= 2)

}
= exp

(
−λ

2
|µ1 − µ2|

)
.

Question 2.5 (Log-sum inequality): Let a1, . . . , an and b1, . . . , bn be non-negative reals. Show
that

n∑
i=1

ai log
ai
bi
≥
( n∑
i=1

ai

)
log

∑n
i=1 ai∑n
i=1 bi

.

(Hint: use the convexity of the function x 7→ − log(x).)
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Question 2.6: Given quantizers g1 and g2, we say that g1 is a finer quantizer than g2 under the
following condition: assume that g1 induces the partition A1, . . . , An and g2 induces the partition
B1, . . . , Bm; then for any of the sets Bi, there are exists some k and sets Ai1 , . . . , Aik such that
Bi = ∪kj=1Aij . We let g1 ≺ g2 denote that g1 is a finer quantizer than g2. Prove

(a) Finer partitions increase the KL divergence: if g1 ≺ g2,

Dkl (P ||Q | g2) ≤ Dkl (P ||Q | g1) .

(b) If X is discrete (so P and Q have p.m.f.s p and q) then

Dkl (P ||Q) =
∑
x

p(x) log
p(x)

q(x)
.

Question 2.7 (f -divergences generalize standard divergences): Show the following properties of
f -divergences:

(a) If f(t) = |t− 1|, then Df (P ||Q) = 2 ‖P −Q‖TV.

(b) If f(t) = t log t, then Df (P ||Q) = Dkl (P ||Q).

(c) If f(t) = t log t− log t, then Df (P ||Q) = Dkl (P ||Q) +Dkl (Q||P ).

(d) For any convex f satisfying f(1) = 0, Df (P ||Q) ≥ 0. (Hint: use Jensen’s inequality.)

Question 2.8 (Generalized “log-sum” inequalities): Let f : R+ → R be an arbitrary convex
function.

(a) Let ai, bi, i = 1, . . . , n be non-negative reals. Prove that( n∑
i=1

ai

)
f

(∑n
i=1 bi∑n
i=1 ai

)
≤

n∑
i=1

aif

(
bi
ai

)
.

(b) Generalizing the preceding result, let a : X → R+ and b : X → R+, and let µ be a finite
measure on X . Show that∫

a(x)dµ(x)f

(∫
b(x)dµ(x)∫
a(x)dµ(x)

)
≤
∫
a(x)f

(
b(x)

a(x)

)
dµ(x).

If you are unfamiliar with measure theory, prove the following essentially equivalent result: let
u : X → R+ satisfy

∫
u(x)dx <∞. Show that∫

a(x)u(x)dxf

(∫
b(x)u(x)dx∫
a(x)u(x)dx

)
≤
∫
a(x)f

(
b(x)

a(x)

)
u(x)dx.

(Hint: use the fact that the perspective of a function f , defined by h(x, t) = tf(x/t) for t > 0, is
jointly convex in x and t [e.g. 31, Chapter 3.2.6].)
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Question 2.9 (Data processing and f -divergences I): As with the KL-divergence, given a quan-
tizer g of the set X , where g induces a partition A1, . . . , Am of X , we define the f -divergence
between P and Q conditioned on g as

Df (P ||Q | g) :=
m∑
i=1

Q(Ai)f

(
P (Ai)

Q(Ai)

)
=

m∑
i=1

Q(g−1({i}))f
(
P (g−1({i}))
Q(g−1({i}))

)
.

Given quantizers g1 and g2, we say that g1 is a finer quantizer than g2 under the following condition:
assume that g1 induces the partition A1, . . . , An and g2 induces the partition B1, . . . , Bm; then for
any of the sets Bi, there are exists some k and sets Ai1 , . . . , Aik such that Bi = ∪kj=1Aij . We let
g1 ≺ g2 denote that g1 is a finer quantizer than g2.

(a) Let g1 and g2 be quantizers of the set X , and let g1 ≺ g2, meaning that g1 is a finer quantization
than g2. Prove that

Df (P ||Q | g2) ≤ Df (P ||Q | g1) .

Equivalently, show that whenever A and B are collections of sets partitioning X , but A is a
finer partition of X than B, that∑

B∈B
Q(B)f

(
P (B)

Q(B)

)
≤
∑
A∈A

Q(A)f

(
P (A)

Q(A)

)
.

(Hint: Use the result of Question 2.8(a)).

(b) Suppose that X is discrete so that P and Q have p.m.f.s p and q. Show that

Df (P ||Q) =
∑
x

q(x)f

(
p(x)

q(x)

)
.

You may assume that X is finite. (Though feel free to prove the result in the case that X is
infinite.)

Question 2.10 (General data processing inequalities): Let f be a convex function satisfying
f(1) = 0. Let K be a Markov transition kernel from X to Z, that is, K(·, x) is a probability
distribution on Z for each x ∈ X . (Written differently, we have X → Z, and conditioned on X = x,
Z has distribution K(·, x), so that K(A, x) is the probability that Z ∈ A given X = x.)

(a) Define the marginals KP (A) =
∫
K(A, x)p(x)dx and KQ(A) =

∫
K(A, x)q(x)dx. Show that

Df (KP ||KQ) ≤ Df (P ||Q) .

Hint: by equation (2.2.3), w.l.o.g. we may assume that Z is finite and Z = {1, . . . ,m}; also
recall Question 2.8.

(b) Let X and Y be random variables with joint distribution PXY and marginals PX and PY .
Define the f -information between X and Y as

If (X;Y ) := Df (PXY ||PX × PY ) .

Use part (a) to show the following general data processing inequality: if we have the Markov
chain X → Y → Z, then

If (X;Z) ≤ If (X;Y ).
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Question 2.11 (Convexity of f -divergences): Prove Proposition 2.13. Hint: Use Question 2.8.

Question 2.12 (Variational forms of KL divergence): Let P and Q be arbitrary distributions on a
common space X . Prove the following variational representation, known as the Donsker-Varadhan
theorem, of the KL divergence:

Dkl (P ||Q) = sup
f :EQ[ef(X)]<∞

{
EP [f(X)]− logEQ[exp(f(X))]

}
.

You may assume that P and Q have densities.

Question 2.13: Let P and Q have densities p and q with respect to the base measure µ over the
set X . (Recall that this is no loss of generality, as we may take µ = P + Q.) Define the support
suppP := {x ∈ X : p(x) > 0}. Show that

Dkl (P ||Q) ≥ log
1

Q(suppP )
.

Question 2.14: Let P1 be N(θ1,Σ1) and P2 be N(θ2,Σ2), where Σi � 0 are positive definite
matrices. Give Dkl (P1||P2).

Question 2.15: Let {Pv}v∈V be an arbitrary collection of distributions on a space X and µ be a
probability measure on V. Show that if V ∼ µ and conditional on V = v, we draw X ∼ Pv, then

(a) I(X;V ) =
∫
Dkl

(
Pv||P

)
dµ(v), where P =

∫
Pvdµ(v) is the (weighted) average of the Pv. You

may assume that V is discrete if you like.

(b) For any distribution Q on X , I(X;V ) =
∫
Dkl (Pv||Q) dµ(v) − Dkl

(
P ||Q

)
. Conclude that

I(X;V ) ≤
∫
Dkl (Pv||Q) dµ(v), or, equivalently, P minimizes

∫
Dkl (Pv||Q) dµ(v) over all prob-

abilities Q.
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Concentration, information, stability,
and generalization
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Chapter 3

Concentration Inequalities

In many scenarios, it is useful to understand how a random variable X behaves by giving bounds
on the probability that it deviates far from its mean or median. This can allow us to give prove
that estimation and learning procedures will have certain performance, that different decoding and
encoding schemes work with high probability, among other results. In this chapter, we give several
tools for proving bounds on the probability that random variables are far from their typical values.
We conclude the section with a discussion of basic uniform laws of large numbers and applications
to empirical risk minimization and statistical learning, though we focus on the relatively simple
cases we can treat with our tools.

3.1 Basic tail inequalities

In this first section, we have a simple to state goal: given a random variable X, how does X
concentrate around its mean? That is, assuming w.l.o.g. that E[X] = 0, how well can we bound

P(X ≥ t)?

We begin with the three most classical three inequalities for this purpose: the Markov, Chebyshev,
and Chernoff bounds, which are all instances of the same technique.

The basic inequality off of which all else builds is Markov’s inequality.

Proposition 3.1 (Markov’s inequality). Let X be a nonnegative random variable, meaning that
X ≥ 0 with probability 1. Then

P(X ≥ t) ≤ E[X]

t
.

Proof For any random variable, P(X ≥ t) = E[1 {X ≥ t}] ≤ E[(X/t)1 {X ≥ t}] ≤ E[X]/t, as
X/t ≥ 1 whenever X ≥ t.

When we know more about a random variable than that its expectation is finite, we can give
somewhat more powerful bounds on the probability that the random variable deviates from its
typical values. The first step in this direction, Chebyshev’s inequality, requires two moments, and
when we have exponential moments, we can give even stronger results. As we shall see, each of
these results is but an application of Proposition 3.1.

35



Stanford Statistics 311/Electrical Engineering 377 John Duchi

Proposition 3.2 (Chebyshev’s inequality). Let X be a random variable with Var(X) <∞. Then

P(X − E[X] ≥ t) ≤ Var(X)

t2
and P(X − E[X] ≤ −t) ≤ Var(X)

t2

for all t ≥ 0.

Proof We prove only the upper tail result, as the lower tail is identical. We first note that
X −E[X] ≥ t implies that (X −E[X])2 ≥ t2. But of course, the random variable Z = (X −E[X])2

is nonnegative, so Markov’s inequality gives P(X − E[X] ≥ t) ≤ P(Z ≥ t2) ≤ E[Z]/t2, and
E[Z] = E[(X − E[X])2] = Var(X).

If a random variable has a moment generating function—exponential moments—we can give
bounds that enjoy very nice properties when combined with sums of random variables. First, we
recall that

ϕX(λ) := E[eλX ]

is the moment generating function of the random variable X. Then we have the Chernoff bound.

Proposition 3.3. For any random variable X, we have

P(X ≥ t) ≤ E[eλX ]

eλt
= ϕX(λ)e−λt

for all λ ≥ 0.

Proof This is another application of Markov’s inequality: for λ > 0, we have eλX ≥ eλt if and
only if X ≥ t, so that P(X ≥ t) = P(eλX ≥ eλt) ≤ E[eλX ]/eλt.

In particular, taking the infimum over all λ ≥ 0 in Proposition 3.3 gives the more standard Chernoff
(large deviation) bound

P(X ≥ t) ≤ exp

(
inf
λ≥0

logϕX(λ)− λt
)
.

Example 3.4 (Gaussian random variables): When X is a mean-zero Gaussian variable with
variance σ2, we have

ϕX(λ) = E[exp(λX)] = exp

(
λ2σ2

2

)
. (3.1.1)

To see this, we compute the integral; we have

E[exp(λX)] =

∫ ∞
−∞

1√
2πσ2

exp

(
λx− 1

2σ2
x2

)
dx

= e
λ2σ2

2

∫ ∞
−∞

1√
2πσ2

exp

(
− 1

2σ2
(x− λσ2x)2

)
dx︸ ︷︷ ︸

=1

,

because this is simply the integral of the Gaussian density.
As a consequence of the equality (3.1.1) and the Chernoff bound technique (Proposition 3.3),
we see that for X Gaussian with variance σ2, we have

P(X ≥ E[X] + t) ≤ exp

(
− t2

2σ2

)
and P(X ≤ E[X]− t) ≤ exp

(
− t2

2σ2

)
for all t ≥ 0. Indeed, we have logϕX−E[X](λ) = λ2σ2

2 , and infλ{λ
2σ2

2 − λt} = − t2

2σ2 , which is
attained by λ = t

σ2 . 3
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3.1.1 Sub-Gaussian random variables

Gaussian random variables are convenient for their nice analytical properties, but a broader class
of random variables with similar moment generating functions are known as sub-Gaussian random
variables.

Definition 3.1. A random variable X is sub-Gaussian with parameter σ2 if

E[exp(λ(X − E[X]))] ≤ exp

(
λ2σ2

2

)
for all λ ∈ R. We also say such a random variable is σ2-sub-Gaussian.

Of course, Gaussian random variables satisfy Definition 3.1 with equality. This would be un-
interesting if only Gaussian random variables satisfied this property; happily, that is not the case,
and we detail several examples.

Example 3.5 (Random signs (Rademacher variables)): The random variable X taking values
{−1, 1} with equal property is 1-sub-Gaussian. Indeed, we have

E[exp(λX)] =
1

2
eλ +

1

2
e−λ =

1

2

∞∑
k=0

λk

k!
+

1

2

∞∑
k=0

(−λ)k

k!
=
∞∑
k=0

λ2k

(2k)!
≤
∞∑
k=0

(λ2)k

2kk!
= exp

(
λ2

2

)
,

as claimed. 3

Bounded random variables are also sub-Gaussian; indeed, we have the following example.

Example 3.6 (Bounded random variables): Suppose that X is bounded, say X ∈ [a, b].
Then Hoeffding’s lemma states that

E[eλ(X−E[X])] ≤ exp

(
λ2(b− a)2

8

)
,

so that X is (b− a)2/4-sub-Gaussian.
We prove a somewhat weaker statement with a simpler argument communicated to us by
Martin Wainwright; Question 3.1 gives one approach to proving the above statement. First,
let ε ∈ {−1, 1} be a Rademacher variable, so that P(ε = 1) = P(ε = −1) = 1

2 . We apply
a so-called symmetrization technique—a common technique in probability theory, statistics,
concentration inequalities, and Banach space research—to give a simpler bound. Indeed, let
X ′ be an independent copy of X, so that E[X ′] = E[X]. We have

ϕX−E[X](λ) = E
[
exp(λ(X − E[X ′]))

]
≤ E

[
exp(λ(X −X ′))

]
= E

[
exp(λε(X −X ′))

]
,

where the inequality follows from Jensen’s inequality and the last equality is a conseqence of
the fact that X −X ′ is symmetric about 0. Using the result of Example 3.5,

E
[
exp(λε(X −X ′))

]
≤ E

[
exp

(
λ2(X −X ′)

2

)]
≤ exp

(
λ2(b− a)2

2

)
,

where the final inequality is immediate from the fact that |X −X ′| ≤ b− a. 3

37



Stanford Statistics 311/Electrical Engineering 377 John Duchi

Chernoff bounds for sub-Gaussian random variables are immediate; indeed, they have the same
concentration properties as Gaussian random variables, a consequence of the nice analytical prop-
erties of their moment generating functions (that their logarithms are at most quadratic). Thus,
using the technique of Example 3.4, we obtain the following proposition.

Proposition 3.7. Let X be a σ2-sub-Gaussian. Then for all t ≥ 0 we have

P(X − E[X] ≥ t) ∨ P(X − E[X] ≤ −t) ≤ exp

(
− t2

2σ2

)
.

Chernoff bounds extend naturally to sums of independent random variables, because moment
generating functions of sums of independent random variables become products of moment gener-
ating functions.

Proposition 3.8. Let X1, X2, . . . , Xn be independent σ2
i -sub-Gaussian random variables. Then

E

[
exp

(
λ

n∑
i=1

(Xi − E[Xi])

)]
≤ exp

(
λ2
∑n

i=1 σ
2
i

2

)
for all λ ∈ R,

that is,
∑n

i=1Xi is
∑n

i=1 σ
2
i -sub-Gaussian.

Proof We assume w.l.o.g. that the Xi are mean zero. We have by independence that and
sub-Gaussianity that

E
[

exp

(
λ

n∑
i=1

Xi

)]
= E

[
exp

(
λ

n−1∑
i=1

Xi

)]
E[exp(λXn)] ≤ exp

(
λ2σ2

n

2

)
E
[

exp

(
λ

n−1∑
i=1

Xi

)]
.

Applying this technique inductively to Xn−1, . . . , X1, we obtain the desired result.

Two immediate corollary to Propositions 3.7 and 3.8 show that sums of sub-Gaussian random
variables concentrate around their expectations. We begin with a general concentration inequality.

Corollary 3.9. Let Xi be independent σ2
i -sub-Gaussian random variables. Then for all t ≥ 0

max

{
P
( n∑
i=1

(Xi − E[Xi]) ≥ t
)
,P
( n∑
i=1

(Xi − E[Xi]) ≤ −t
)}
≤ exp

(
− t2

2
∑n

i=1 σ
2
i

)
.

Additionally, the classical Hoeffding bound, follows when we couple Example 3.6 with Corollary 3.9:
if Xi ∈ [ai, bi], then

P
( n∑
i=1

(Xi − E[Xi]) ≥ t
)
≤ exp

(
− 2t2∑n

i=1(bi − ai)2

)
.

To give another interpretation of these inequalities, let us assume that Xi are indepenent and
σ2-sub-Gaussian. Then we have that

P
(

1

n

n∑
i=1

(Xi − E[Xi]) ≥ t
)
≤ exp

(
− nt

2

2σ2

)
,
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or, for δ ∈ (0, 1), setting exp(− nt2

2σ2 ) = δ or t =

√
2σ2 log 1

δ√
n

, we have that

1

n

n∑
i=1

(Xi − E[Xi]) ≤

√
2σ2 log 1

δ√
n

with probability at least 1− δ.

There are a variety of other conditions equivalent to sub-Gaussianity, which we relate by defining
the sub-Gaussian norm of a random variable. In particular, we define the sub-Gaussian norm
(sometimes known as the ψ2-Orlicz norm in the literature) as

‖X‖ψ2
:= sup

k≥1

1√
k
E[|X|k]1/k (3.1.2)

Then we have the following various characterizations of sub-Gaussianity.

Theorem 3.10. Let X be a mean-zero random variable and σ2 ≥ 0 be a constant. The following
statements are all equivalent, meaning that there are numerical constant factors Kj such that if one
statement (i) holds with parameter Ki, then statement (j) holds with parameter Kj ≤ CKi, where
C is a numerical constant.

(1) Sub-gaussian tails: P(|X| ≥ t) ≤ 2 exp(− t2

K1σ2 ) for all t ≥ 0.

(2) Sub-gaussian moments: E[|X|k]1/k ≤ K2σ
√
k for all k.

(3) Super-exponential moment: E[exp(X2/(K3σ
2))] ≤ e.

(4) Sub-gaussian moment generating function: E[exp(λX)] ≤ exp(K4λ
2σ2) for all λ ∈ R.

Particularly, (1) implies (2) with K1 = 1 and K2 ≤ e1/e; (2) implies (3) with K2 = 1 and

K3 = e
√

2
e−1 < 3; (3) implies (4) with K3 = 1 and K4 ≤ 3

4 ; and (4) implies (1) with K4 = 1
2 and

K1 ≤ 2.

This result is standard in the literature on concentration and random variables; our proof is based
on Vershynin [134]. See Appendix 3.4.1 for a proof of this theorem. We note in passing that in
each of the statements of Theorem 3.10, we may take σ = ‖X‖ψ2

, and (in general) these are the
sharpest possible results except for numerical constants.

For completeness, we can give a tighter result than part (3) of the preceding theorem, giving a
concrete upper bound on squares of sub-Gaussian random variables. The technique used in the ex-
ample, to introduce an independent random variable for auxiliary randomization, is a common and
useful technique in probabilistic arguments (similar to our use of symmetrization in Example 3.6).

Example 3.11 (Sub-Gaussian squares): Let X be a mean-zero σ2-sub-Gaussian random
variable. Then

E[exp(λX2)] ≤ 1

[1− 2σ2λ]
1
2
+

, (3.1.3)

and expression (3.1.3) holds with equality for X ∼ N(0, σ2).
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To see this result, we focus on the Gaussian case first and assume (for this case) without loss
of generality (by scaling) that σ2 = 1. Assuming that λ < 1

2 , we have

E[exp(λZ2)] =

∫
1√
2π
e−( 1

2
−λ)z2dz =

∫
1√
2π
e−

1−2λ
2

z2dz =

√
2π√

1− 2λ

1√
2π
,

the final equality a consequence of the fact that (as we know for normal random variables)∫
e−

1
2σ2

z2dz =
√

2πσ2. When λ ≥ 1
2 , the above integrals are all infinite, giving the equality in

expression (3.1.3).
For the more general inequality, we recall that if Z is an independent N(0, 1) random variable,

then E[exp(tZ)] = exp( t
2

2 ), and so

E[exp(λX2)] = E[exp(
√

2λXZ)]
(i)

≤ E
[
exp(λσ2Z2)

] (ii)
=

1

[1− 2σ2λ]
1
2
+

,

where inequality (i) follows because X is sub-Gaussian, and inequality (ii) because Z ∼ N(0, 1).
3

3.1.2 Sub-exponential random variables

A slightly weaker condition than sub-Gaussianity is for a random variable to be sub-exponential,
which—for a mean-zero random variable—means that its moment generating function exists in a
neighborhood of zero.

Definition 3.2. A random variable X is sub-exponential with parameters (τ2, b) if for all λ such
that |λ| ≤ 1/b,

E[eλ(X−E[X])] ≤ exp

(
λ2τ2

2

)
.

It is clear from Definition 3.2 that a σ2-sub-Gaussian random variable is (σ2, 0)-sub-exponential.
A variety of random variables are sub-exponential. As a first example, χ2-random variables are

sub-exponential with constant values for τ and b:

Example 3.12: Let X = Z2, where Z ∼ N(0, 1). We claim that

E[exp(λ(X − E[X]))] ≤ exp(2λ2) for λ ≤ 1

4
. (3.1.4)

Indeed, for λ < 1
2 we have that

E[exp(λ(Z2 − E[Z2]))] = exp

(
−1

2
log(1− 2λ)− λ

)
(i)

≤ exp
(
λ+ 2λ2 − λ

)
where inequality (i) holds for λ ≤ 1

4 , because − log(1− 2λ) ≤ 2λ+ 4λ2 for λ ≤ 1
4 . 3

As a second example, we can show that bounded random variables are sub-exponential. It is
clear that this is the case as they are also sub-Gaussian; however, in many cases, it is possible to
show that their parameters yield much tighter control over deviations than is possible using only
sub-Gaussian techniques.
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Example 3.13 (Bounded random variables are sub-exponential): Suppose that X is a mean
zero random variable taking values in [−b, b] with variance σ2 = E[X2] (note that we are
guaranteed that σ2 ≤ b2 in this case). We claim that

E[exp(λX)] ≤ exp

(
3λ2σ2

5

)
for |λ| ≤ 1

2b
. (3.1.5)

To see this, note first that for k ≥ 2 we have E[|X|k] ≤ E[X2bk−2] = σ2bk−2. Then by an
expansion of the exponential, we find

E[exp(λX)] = 1 + E[λX] +
λ2E[X2]

2
+
∞∑
k=3

λkE[Xk]

k!
≤ 1 +

λ2σ2

2
+
∞∑
k=3

λkσ2bk−2

k!

= 1 +
λ2σ2

2
+ λ2σ2

∞∑
k=1

(λb)k

(k + 2)!

(i)

≤ 1 +
λ2σ2

2
+
λ2σ2

10
,

inequality (i) holding for λ ≤ 1
2b . Using that 1 + x ≤ ex gives the result.

It is possible to give a slightly tighter result for λ ≥ 0 In this case, we have the bound

E[exp(λX)] ≤ 1 +
λ2σ2

2
+ λ2σ2

∞∑
k=3

λk−2bk−2

k!
= 1 +

σ2

b2

(
eλb − 1− λb

)
.

Then using that 1 + x ≤ ex, we obtain Bennett’s moment generating inequality, which is that

E[eλX ] ≤ exp

(
σ2

b2

(
eλb − 1− λb

))
for λ ≥ 0. (3.1.6)

Inequality (3.1.6) always holds, and for λb near 0, we have eλb − 1− λb ≈ λ2b2

2 . 3

In particular, if the variance σ2 � b2, the absolute bound on X, inequality (3.1.5) gives much
tighter control on the moment generating function of X than typical sub-Gaussian bounds based
only on the fact that X ∈ [−b, b] allow.

We can give a broader characterization, as with sub-Gaussian random variables in Theorem 3.10.
First, we define the sub-exponential norm (in the literature, there is an equivalent norm often called
the Orlicz ψ1-norm)

‖X‖ψ1
:= sup

k≥1

1

k
E[|X|k]1/k.

For any sub-Gaussian random variable—whether it has mean-zero or not—we have that sub-
exponential is sub-Gaussian squared:

‖X‖2ψ2
≤
∥∥X2

∥∥
ψ1
≤ 2 ‖X‖2ψ2

, (3.1.7)

which is immediate from the definitions. More broadly, we can show a result similar to Theo-
rem 3.10.

Theorem 3.14. Let X be a random variable and σ ≥ 0. Then—in the sense of Theorem 3.10—the
following statements are all equivalent for suitable numerical constants K1, . . . ,K4.

(1) Sub-exponential tails: P(|X| ≥ t) ≤ 2 exp(− t
K1σ

) for all t ≥ 0
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(2) Sub-exponential moments: E[|X|k]1/k ≤ K2σk for all k ≥ 1.

(3) Existence of moment generating function: E[exp(X/(K3σ))] ≤ e.

(4) If, in addition, E[X] = 0, then E[exp(λX)] ≤ exp(K4λ
2σ2) for all |λ| ≤ K ′4/σ.

In particular, if (2) holds with K2 = 1, then (4) holds with K4 = 2e2 and K ′4 = 1
2e .

The proof, which is similar to that for Theorem 3.10, is presented in Section 3.4.2.
While the concentration properties of sub-exponential random variables are not quite so nice as

those for sub-Gaussian random variables (recall Hoeffding’s inequality, Corollary 3.9), we can give
sharp tail bounds for sub-exponential random variables. We first give a simple bound on deviation
probabilities.

Proposition 3.15. Let X be a mean-zero (τ2, b)-sub-exponential random variable. Then for all
t ≥ 0,

P(X ≥ t) ∨ P(X ≤ −t) ≤ exp

(
−1

2
min

{
t2

τ2
,
t

b

})
.

Proof The proof is an application of the Chernoff bound technique; we prove only the upper tail
as the lower tail is similar. We have

P(X ≥ t) ≤ E[eλX ]

eλt

(i)

≤ exp

(
λ2τ2

2
− λt

)
,

inequality (i) holding for |λ| ≤ 1/b. To minimize the last term in λ, we take λ = min{ t
τ2
, 1/b},

which gives the result.

Comparing with sub-Gaussian random variables, which have b = 0, we see that Proposition 3.15
gives a similar result for small t—essentially the same concentration sub-Gaussian random variables—
while for large t, the tails decrease only exponentially in t.

We can also give a tensorization identity similar to Proposition 3.8.

Proposition 3.16. Let X1, . . . , Xn be independent mean-zero sub-exponential random variables,
where Xi is (σ2

i , bi)-sub-exponential. Then for any vector ai ∈ Rn, we have

E

[
exp

(
λ

n∑
i=1

Xi

)]
≤ exp

(
λ2
∑n

i=1 a
2
iσ

2
i

2

)
for |λ| ≤ 1

b∗
,

where b∗ = maxi bi|ai|. That is, 〈a,X〉 is (
∑n

i=1 a
2
iσ

2
i ,mini

1
bi|ai|)-sub-exponential.

Proof We apply an inductive technique similar to that used in the proof of Proposition 3.8.
First, for any fixed i, we know that if |λ| ≤ 1

bi|ai| , then |aiλ| ≤ 1
bi

and so

E[exp(λaiXi)] ≤ exp

(
λ2a2

iσ
2
i

2

)
.

Now, we inductively apply the preceding inequality, which applies so long as |λ| ≤ 1
bi|ai| for all i.

We have

E

[
exp

(
λ

n∑
i=1

aiXi

)]
=

n∏
i=1

E[exp(λaiXi)] ≤
n∏
i=1

exp

(
λ2a2

iσ
2
i

2

)
,
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which is our desired result.

As in the case of sub-Gaussian random variables, a combination of the tensorization property—
that the moment generating functions of sums of sub-exponential random variables are well-
behaved—of Proposition 3.16 and the concentration inequality (3.15) immediately yields the fol-
lowing Bernstein-type inequality. (See also Vershynin [134].)

Corollary 3.17. Let X1, . . . , Xn be independent mean-zero (σ2
i , bi)-sub-exponential random vari-

ables (Definition 3.2). Define b∗ := maxi bi. Then for all t ≥ 0 and all vectors a ∈ Rn, we
have

P
( n∑
i=1

aiXi ≥ t
)
∨ P
( n∑
i=1

aiXi ≤ −t
)
≤ exp

(
−1

2
min

{
t2∑n

i=1 a
2
iσ

2
i

,
t

b∗ ‖a‖∞

})
.

It is instructive to study the structure of the bound of Corollary 3.17. Notably, the bound is
similar to the Hoeffding-type bound of Corollary 3.9 (holding for σ2-sub-Gaussian random variables)
that

P
( n∑
i=1

aiXi ≥ t
)
≤ exp

(
− t2

2 ‖a‖22 σ2

)
,

so that for small t, Corollary 3.17 gives sub-Gaussian tail behavior. For large t, the bound is weaker.
However, in many cases, Corollary 3.17 can give finer control than naive sub-Gaussian bounds.
Indeed, suppose that the random variables Xi are i.i.d., mean zero, and satisfy Xi ∈ [−b, b] with
probability 1, but have variance σ2 = E[X2

i ] ≤ b2 as in Example 3.13. Then Corollary 3.17 implies
that

P
( n∑
i=1

aiXi ≥ t
)
≤ exp

(
−1

2
min

{
5

6

t2

σ2 ‖a‖22
,

t

2b ‖a‖∞

})
. (3.1.8)

When applied to a standard mean (and with a minor simplification that 5/12 < 1/3) with ai = 1
n ,

we obtain the bound that 1
n

∑n
i=1Xi ≤ t with probability at least 1−exp(−nmin{ t2

3σ2 ,
t

4b}). Written

differently, we take t = max{σ
√

3 log 1
δ

n ,
4b log 1

δ
n } to obtain

1

n

n∑
i=1

Xi ≤ max

σ
√

3 log 1
δ√

n
,
4b log 1

δ

n

 with probability 1− δ.

The sharpest such bound possible via more naive Hoeffding-type bounds is b
√

2 log 1
δ/
√
n, which

has substantially worse scaling.

Further conditions and examples

There are a number of examples and conditions sufficient for random variables to be sub-exponential.
One common condition, the so-called Bernstein condition, controls the higher moments of a random
variable X by its variance. In this case, we say that X satisfies the b-Bernstein condition if

|E[(X − µ)k]| ≤ k!

2
σ2bk−2 for k = 3, 4, . . . , (3.1.9)
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where µ = E[X] and σ2 = Var(X) = E[X2] − µ2. In this case, the following lemma controls the
moment generating function of X. This result is essentially present in Theorem 3.14, but it provides
somewhat tighter control with precise constants.

Lemma 3.18. Let X be a random variable satisfying the Bernstein condition (3.1.9). Then

E
[
eλ(X−µ)

]
≤ exp

(
λ2σ2

2(1− b|λ|)

)
for |λ| ≤ 1

b
.

Said differently, a random variable satisfying Condition (3.1.9) is (
√

2σ, b/2)-sub-exponential.
Proof Without loss of generality we assume µ = 0. We expand the moment generating function
by noting that

E[eλX ] = 1 +
λ2σ2

2
+
∞∑
k=3

λkE[Xk]

k!

(i)

≤ 1 +
λ2σ2

2
+
λ2σ2

2

∞∑
k=3

|λb|k−2

= 1 +
λ2σ2

2

1

[1− b|λ|]+
where inequality (i) used the Bernstein condition (3.1.9). Noting that 1+x ≤ ex gives the result.

As one final example, we return to Bennett’s inequality (3.1.6) from Example 3.13.

Proposition 3.19 (Bennett’s inequality). Let Xi be independent mean-zero random variables with
Var(Xi) = σ2

i and |Xi| ≤ b. Then for h(t) := (1 + t) log(1 + t)− t and σ2 :=
∑n

i=1 σ
2
i , we have

P

(
n∑
i=1

Xi ≥ t

)
≤ exp

(
−σ

2

b2
h

(
bt

σ2

))
.

Proof We assume without loss of generality that E[X] = 0. Using the standard Chernoff bound
argument coupled with inequality (3.1.6), we see that

P

(
n∑
i=1

Xi ≥ t
∑)

≤ exp

(
n∑
i=1

σ2
i

b2

(
eλb − 1− λb

)
− λt

)
.

Letting h(t) = (1 + t) log(1 + t) − t as in the statement of the proposition and σ2 =
∑n

i=1 σ
2
i , we

minimize over λ ≥ 0, setting λ = 1
b log(1 + bt

σ2 ). Substituting into our Chernoff bound application
gives the proposition.

A slightly more intuitive writing of Bennett’s inequality is to use averages, in which case for
σ2 = 1

n

∑n
i=1 σ

2
i the average of the variances,

P

(
1

n

n∑
i=1

Xi ≥ t

)
≤ exp

(
−nσ

2

b
h

(
bt

σ2

))
.

It is possible to show that
nσ2

b
h

(
bt

σ2

)
≥ nt2

2σ2 + 2
3bt

,

which gives rise to the classical Bernstein inequality that

P

(
1

n

n∑
i=1

Xi ≥ t

)
≤ exp

(
− nt2

2σ2 + 2
3bt

)
.
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3.1.3 First applications of concentration: random projections

In this section, we investigate the use of concentration inequalities in random projections. As
motivation, consider nearest-neighbor (or k-nearest-neighbor) classification schemes. We have a
sequence of data points as pairs (ui, yi), where the vectors ui ∈ Rd have labels yi ∈ {1, . . . , L},
where L is the number of possible labels. Given a new point u ∈ Rd that we wish to label, we find
the k-nearest neighbors to u in the sample {(ui, yi)}ni=1, then assign u the majority label of these
k-nearest neighbors (ties are broken randomly). Unfortunately, it can be prohibitively expensive to
store high-dimensional vectors and search over large datasets to find near vectors; this has motivated
a line of work in computer science on fast methods for nearest neighbors based on reducing the
dimension while preserving essential aspects of the dataset. This line of research begins with Indyk
and Motwani [90], and continuing through a variety of other works, including Indyk [89] and work
on locality-sensitive hashing by Andoni et al. [6], among others. The original approach is due to
Johnson and Lindenstrauss, who used the results in the study of Banach spaces [94]; our proof
follows a standard argument.

The most specific variant of this problem is as follows: we have n points u1, . . . , un, and we
could like to construct a mapping Φ : Rd → Rm, where m� d, such that

‖Φui − Φuj‖2 ∈ (1± ε) ‖ui − uj‖2 .

Depending on the norm chosen, this task may be impossible; for the Euclidean (`2) norm, however,
such an embedding is easy to construct using Gaussian random variables and with m = O( 1

ε2
log n).

This embedding is known as the Johnson-Lindenstrauss embedding. Note that this size m is
independent of the dimension d, only depending on the number of points n.

Example 3.20 (Johnson-Lindenstrauss): Let the matrix Φ ∈ Rm×d be defined as follows:

Φij
iid∼ N(0, 1/m),

and let Φi ∈ Rd denote the ith row of this matrix. We claim that

m ≥ 8

ε2

[
2 log n+ log

1

δ

]
implies ‖Φui − Φuj‖22 ∈ (1± ε) ‖ui − uj‖22

for all pairs ui, uj with probability at least 1−δ. In particular, m & logn
ε2

is sufficient to achieve
accurate dimension reduction with high probability.
To see this, note that for any fixed vector u,

〈Φi, u〉
‖u‖2

∼ N(0, 1/m), and
‖Φu‖22
‖u‖22

=
m∑
i=1

〈Φi, u/ ‖u‖2〉
2

is a sum of independent scaled χ2-random variables. In particular, we have E[‖Φu/ ‖u‖2‖
2
2] = 1,

and using the χ2-concentration result of Example 3.12 yields

P
(∣∣∣‖Φu‖22 / ‖u‖22 − 1

∣∣∣ ≥ ε) = P
(
m
∣∣∣‖Φu‖22 / ‖u‖22 − 1

∣∣∣ ≥ mε)
≤ 2 inf

|λ|≤ 1
4

exp
(
2mλ2 − λmε

)
= 2 exp

(
−mε

2

8

)
,
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the last inequality holding for ε ∈ [0, 1]. Now, using the union bound applied to each of the
pairs (ui, uj) in the sample, we have

P
(

there exist i 6= j s.t.
∣∣∣‖Φ(ui − uj)‖22 − ‖ui − uj‖

2
2

∣∣∣ ≥ ε ‖ui − uj‖22) ≤ 2

(
n

2

)
exp

(
−mε

2

8

)
.

Taking m ≥ 8
ε2

log n2

δ = 16
ε2

log n + 8
ε2

log 1
δ yields that with probability at least 1− δ, we have

‖Φui − Φuj‖22 ∈ (1± ε) ‖ui − uj‖22. 3

Computing low-dimensional embeddings of high-dimensional data is an area of active research,
and more recent work has shown how to achieve sharper constants [50] and how to use more struc-
tured matrices to allow substantially faster computation of the embeddings Φu (see, for example,
Achlioptas [1] for early work in this direction, and Ailon and Chazelle [3] for the so-called “Fast
Johnson-Lindenstrauss transform”).

3.1.4 A second application of concentration: codebook generation

We now consider a (very simplified and essentially un-implementable) view of encoding a signal for
transmission and generation of a codebook for transmitting said signal. Suppose that we have a set
of words, or signals, that we wish to transmit; let us index them by i ∈ {1, . . . ,m}, so that there are
m total signals we wish to communicate across a binary symmetric channel Q, meaning that given
an input bit x ∈ {0, 1}, Q outputs a z ∈ {0, 1} with Q(Z = x | x) = 1− ε and Q(Z = 1−x | x) = ε,
for some ε < 1

2 . (For simplicity, we assume Q is memoryless, meaning that when the channel is
used multiple times on a sequence x1, . . . , xn, its outputs Z1, . . . , Zn are conditionally independent:
Q(Z1:n = z1:n | x1:n) = Q(Z1 = z1 | x1) · · ·Q(Zn = zn | xn).)

We consider a simplified block coding scheme, where we for each i we associate a codeword
xi ∈ {0, 1}d, where d is a dimension (block length) to be chosen. Upon sending the codeword over
the channel, and receiving some zrec ∈ {0, 1}d, we decode by choosing

i∗ ∈ argmax
i∈[m]

Q(Z = zrec | xi) = argmin
i∈[m]

‖zrecxi‖1 , (3.1.10)

the maximum likelihood decoder. We now investigate how to choose a collection {x1, . . . , xm}
of such codewords and give finite sample bounds on its probability of error. In fact, by using
concentration inequalities, we can show that a randomly drawn codebook of fairly small dimension
is likely to enjoy good performance.

Intuitively, if our codebook {x1, . . . , xm} ⊂ {0, 1}d is well-separated, meaning that each pair of
words xi, xk satisfies ‖xi − xk‖1 ≥ cd for some numerical constant c > 0, we should be unlikely to
make a mistake. Let us make this precise. We mistake word i for word k only if the received signal
Z satisfies ‖Z − xi‖1 ≥ ‖Z − xk‖1, and letting J = {j ∈ [d] : xij 6= xkj} denote the set of at least
c · d indices where xi and xk differ, we have

‖Z − xi‖1 ≥ ‖Z − xk‖1 if and only if
∑
j∈J
|Zj − xij | − |Zj − xkj | ≥ 0.

If xi is the word being sent and xi and xk differ in position j, then |Zj −xij |− |Zj −xkj | ∈ {−1, 1},
and is equal to −1 with probability (1− ε) and 1 with probability ε. That is, we have ‖Z − xi‖1 ≥
‖Z − xk‖1 if and only if∑

j∈J
|Zj − xij | − |Zj − xkj |+ |J |(1− 2ε) ≥ |J |(1− 2ε) ≥ cd(1− 2ε),
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and the expectation EQ[|Zj−xij |−|Zj−xkj | | xi] = −(1−2ε) when xij 6= xkj . Using the Hoeffding
bound, then, we have

Q(‖Z − xi‖1 ≥ ‖Z − xk‖1 | xi) ≤ exp

(
−|J |(1− 2ε)2

2

)
≤ exp

(
−cd(1− 2ε)2

2

)
,

where we have used that there are at least |J | ≥ cd indices differing between xi and xk. The
probability of making a mistake at all is thus at most m exp(−1

2cd(1 − 2ε)2) if our codebook has
separation c · d.

For low error decoding to occur with extremely high probability, it is thus sufficient to choose
a set of code words {x1, . . . , xm} that is well separated. To that end, we state a simple lemma.

Lemma 3.21. Let Xi, i = 1, . . . ,m be drawn independently and uniformly on the d-dimensional
hypercube Hd := {0, 1}d. Then for any t ≥ 0,

P
(
∃ i, j s.t. ‖Xi −Xj‖1 <

d

2
− dt

)
≤
(
m

2

)
exp

(
−2dt2

)
≤ m2

2
exp

(
−2dt2

)
.

Proof First, let us consider two independent draws X and X ′ uniformly on the hypercube. Let

Z =
∑d

j=1 1
{
Xj 6= X ′j

}
= dham(X,X ′) = ‖X −X ′‖1. Then E[Z] = d

2 . Moreover, Z is an i.i.d.

sum of Bernoulli 1
2 random variables, so that by our concentration bounds of Corollary 3.9, we have

P
(∥∥X −X ′∥∥

1
≤ d

2
− t
)
≤ exp

(
−2t2

d

)
.

Using a union bound gives the remainder of the result.

Rewriting the lemma slightly, we may take δ ∈ (0, 1). Then

P

(
∃ i, j s.t. ‖Xi −Xj‖1 <

d

2
−
√
d log

1

δ
+ d logm

)
≤ δ.

As a consequence of this lemma, we see two things:

(i) If m ≤ exp(d/16), or d ≥ 16 logm, then taking δ ↑ 1, there at least exists a codebook
{x1, . . . , xm} of words that are all separated by at least d/4, that is, ‖xi − xj‖1 ≥

d
4 for all

i, j.

(ii) By taking m ≤ exp(d/32), or d ≥ 32 logm, and δ = e−d/32, then with probability at least
1−e−d/32—exponentially large in d—a randomly drawn codebook has all its entries separated
by at least ‖xi − xj‖1 ≥

d
4 .

Summarizing, we have the following result: choose a codebook of m codewords x1, . . . , xm uniformly
at random from the hypercube Hd = {0, 1}d with

d ≥ max

{
32 logm,

8 log m
δ

(1− 2ε)2

}
.

Then with probability at least 1− 1/m over the draw of the codebook, the probability we make a
mistake in transmission of any given symbol i over the channel Q is at most δ.
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3.2 Martingale methods

The next set of tools we consider constitute our first look at argument sbased on stability, that is,
how quantities that do not change very much when a single observation changes should concentrate.
In this case, we would like to understand more general quantities than sample means, developing a
few of the basic cools to understand when functions f(X1, . . . , Xn) of independent random variables
Xi concentrate around their expectations. Roughly, we expect that if changing the value of one xi
does not significantly change f(xn1 ) much—it is stable—then it should exhibit good concentration
properties.

To develop the tools to do this, we go throuhg an approach based on martingales, a deep subject
in probability theory. We give a high-level treatment of martingales, taking an approach that does
not require measure-theoretic considerations, providing references at the end of the chapter. We
begin by providing a definition.

Definition 3.3. Let M1,M2, . . . be an R-valued sequence of random variables. They are a martin-
gale if there exist another sequence of random variables {Z1, Z2, . . .} ⊂ Z and sequence of functions
fn : Zn → R such that

E[Mn | Zn−1
1 ] = Mn−1 and Mn = fn(Zn1 )

for all n ∈ N. We say that the sequence Mn is adapted to {Zn}.

In general, the sequence Z1, Z2, . . . is a sequence of increasing σ-fields F1,F2, . . ., and Mn is Fn-
measurable, but Definition 3.3 is sufficienet for our purposes. We also will find it convenient to
study differences of martingales, so that we make the following

Definition 3.4. Let D1, D2, . . . be a sequence of random variables. They form a martingale differ-
ence sequence if Mn :=

∑n
i=1Di is a martingale.

Equivalently, there is a sequence of random variables Zn and functions gn : Zn → R such that

E[Dn | Zn−1
1 ] = 0 and Dn = gn(Zn1 )

for all n ∈ N.
There are numerous examples of martingale sequences. The classical one is the symmetric

random walk.

Example 3.22: Let Dn ∈ {±1} be uniform and independent. Then Dn form a martingale
difference sequence adapted to themselves (that is, we may take Zn = Dn), and Mn =

∑n
i=1Di

is a martingale. 3

A more sophisticated example, to which we will frequently return and that suggests the potential
usefulness of martingale constructions, is the Doob martingale associated with a function f .

Example 3.23 (Doob martingales): Let f : X n → R be an otherwise arbitrary function,
and let X1, . . . , Xn be arbitrary random variables. The Doob martingale is defined by the
difference sequence

Di := E[f(Xn
1 ) | Xi

1]− E[f(Xn
1 ) | Xi−1

1 ].

By inspection, the Di are functions of Xi
1, and we have

E[Di | Xi−1
1 ] = E[E[f(Xn

1 ) | Xi
1] | Xi−1

1 ]− E[f(Xn
1 ) | Xi−1

1 ]

= E[f(Xn
1 ) | Xi−1

1 ]− E[f(Xn
1 ) | Xi−1

1 ] = 0
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by the tower property of expectations. Thus, the Di satisfy Definition 3.4 of a martingale
difference sequence, and moreover, we have

n∑
i=1

Di = f(Xn
1 )− E[f(Xn

1 )],

and so the Doob martingale captures exactly the difference between f and its expectation. 3

3.2.1 Sub-Gaussian martingales and Azuma-Hoeffding inequalities

With these motivating ideas introduced, we turn to definitions, providing generalizations of our
concentration inequalities for sub-Gaussian sums to sub-Gaussian martingales, which we define.

Definition 3.5. Let {Dn} be a martingale difference sequence adapted to {Zn}. Then Dn is a
σ2
n-sub-Gaussian martingale difference if

E[exp(λDn) | Zn−1
1 ] ≤ exp

(
λ2σ2

n

2

)
for all n and λ ∈ R.

Immediately from the definition, we have the Azuma-Hoeffding inequalities, which generalize
the earlier tensorization identities for sub-Gaussian random variables.

Theorem 3.24 (Azuma-Hoeffding). Let {Dn} be a σ2
n-sub-Gaussian martingale difference se-

quence. Then Mn =
∑n

i=1Di is
∑n

i=1 σ
2
i -sub-Gaussian, and moreover,

max {P(Mn ≥ t),P(Mn ≤ −t)} ≤ exp

(
− nt2

2
∑n

i=1 σ
2
i

)
for all t ≥ 0.

Proof The proof is essentially immediate: letting Zn be the sequence to which the Dn are
adapted, we write

E[exp(λMn)] = E

[
n∏
i=1

eλDi

]

= E

[
E

[
n∏
i=1

eλDi | Zn−1
1

]]

= E

[
E

[
n−1∏
i=1

eλDi | Zn−1
1

]
E[eλDn | Zn−1

1 ]

]

because D1, . . . , Dn−1 are functions of Zn−1
1 . Then we use Definition 3.5, which implies that

E[eλDn | Zn−1
1 ] ≤ eλ2σ2

n/2, and we obtain

E[exp(λMn)] ≤ E

[
n−1∏
i=1

eλDi

]
exp

(
λ2σ2

n

2

)
.

Repeating the same argument for n− 1, n− 2, . . . , 1 gives that

logE[exp(λMn)] ≤ λ2

2

n∑
i=1

σ2
i
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as desired.
The second claims are simply applications of Chernoff bounds via Proposition 3.7 and that

E[Mn] = 0.

As an immediate corollary, we recover Proposition 3.8, as sums of independent random variables
form martingales via Mn =

∑n
i=1(Xi − E[Xi]). A second corollary gives what is typically termed

the Azuma inequality:

Corollary 3.25. Let Di be a bounded difference martingale difference sequence, meaning that
|Di| ≤ c. Then Mn =

∑n
i=1Di satisfies

P(n−1/2Mn ≥ t) ∨ P(n−1/2Mn ≤ −t) ≤ exp

(
− t2

2c2

)
for t ≥ 0.

Thus, bounded random walks are (with high probability) within ±
√
n of their expectations after

n steps.
There exist extensions of these inequalities to the cases where we control the variance of the

martingales; see Freedman [69].

3.2.2 Examples and bounded differences

We now develop several example applications of the Azuma-Hoeffding inequalities (Theorem 3.24),
applying them most specifically to functions satisfying certain stability conditions.

We first define the collections of functions we consider.

Definition 3.6 (Bounded differences). Let f : X n → R for some space X . Then f satisfies
bounded differences with constants ci if for each i ∈ {1, . . . , n}, all xn1 ∈ X n, and x′i ∈ X we have

|f(xi−1
1 , xi, x

n
i+1)− f(xi−1

1 , x′i, x
n
i+1)| ≤ ci.

The classical inequality relating bounded differences and concentration is McDiarmid’s inequal-
ity, or the bounded differences inequality.

Proposition 3.26 (Bounded differences inequality). Let f : X n → R satisfy bounded differences
with constants ci, and let Xi be independent random variables. f(Xn

1 )−E[f(Xn
1 )] is 1

4

∑n
i=1 c

2
i -sub-

Gaussian, and

P (f(Xn
1 )− E[f(Xn

1 )] ≥ t) ∨ P (f(Xn
1 )− E[f(Xn

1 )] ≤ −t) ≤ exp

(
− 2t2∑n

i=1 c
2
i

)
.

Proof The basic idea is to show that the Doob martingale (Example 3.23) associated with f is
c2
i /4-sub-Gaussian, and then to simply apply the Azuma-Hoeffding inequality. To that end, define
Di = E[f(Xn

1 ) | Xi
1]−E[f(Xn

1 ) | Xi−1
1 ] as before, and note that

∑n
i=1Di = f(Xn

1 )−E[f(Xn
1 )]. The

random variables

Li := inf
x
E[f(Xn

1 ) | Xi−1
1 , Xi = x]− E[f(Xn

1 ) | Xi−1
1 ]

Ui := sup
x

E[f(Xn
1 ) | Xi−1

1 , Xi = x]− E[f(Xn
1 ) | Xi−1

1 ]
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evidently satisfy Li ≤ Di ≤ Ui, and moreover, we have

Ui − Li ≤ sup
xi−1
1

sup
x,x′

{
E[f(Xn

1 ) | Xi−1
1 = xi−1

1 , Xi = x]− E[f(Xn
1 ) | Xi−1

1 = xi−1
1 , Xi = x′]

}
= sup

xi−1
1

sup
x,x′

∫ (
f(xi−1

1 , x, xni+1)− f(xi−1
1 , x′, xni+1)

)
dP (xni+1) ≤ ci,

where we have used the independence of the Xi and Definition 3.6 of bounded differences. Conse-
quently, we have by Hoeffding’s Lemma (Example 3.6) that E[eλDi | Xi−1

1 ] ≤ exp(λ2c2
i /8), that is,

the Doob martingale is c2
i /4-sub-Gaussian.

The remainder of the proof is simply Theorem 3.24.

A number of quantities satisfy the conditions of Proposition 3.26, and we give two examples
here; we will revisit them more later.

Example 3.27 (Bounded random vectors): Let B be a Banach space—a complete normed
vector space—with norm ‖·‖. Let Xi be independent bounded random vectors in B satisfying
E[Xi] = 0 and ‖Xi‖ ≤ c. We claim that the quantity

f(Xn
1 ) :=

∥∥∥∥ 1

n

n∑
i=1

Xi

∥∥∥∥
satisfies bounded differences. Indeed, we have by the triangle inequality that

|f(xi−1
1 , x, xni+1)− f(xi−1

1 , x′, xni+1)| ≤ 1

n

∥∥x− x′∥∥ ≤ 2c

n
.

Consequently, if Xi are indpendent, we have

P

(∣∣∣∣∣
∥∥∥∥ 1

n

n∑
i=1

Xi

∥∥∥∥− E
[∥∥∥∥ 1

n

n∑
i=1

Xi

∥∥∥∥]
∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
−nt

2

2c2

)
(3.2.1)

for all t ≥ 0. That is, the norm of (bounded) random vectors in an essentially arbitrary vector
space concentrates extremely quickly about its expectation.
The challenge becomes to control the expectation term in the concentration bound (3.2.1),
which can be a bit challenging. In certain cases—for example, when we have a Euclidean
structure on the vectors Xi—it can be easier. Indeed, let us specialize to the case that Xi ∈ H,
a (real) Hilbert space, so that there is an inner product 〈·, ·〉 and the norm satisfies ‖x‖2 = 〈x, x〉
for x ∈ H. Then Cauchy-Schwarz implies that

E
[∥∥∥∥ n∑

i=1

Xi

∥∥∥∥]2

≤ E
[∥∥∥∥ n∑

i=1

Xi

∥∥∥∥2]
=
∑
i,j

E[〈Xi, Xj〉] =

n∑
i=1

E[‖Xi‖2].

That is assuming the Xi are independent and E[‖Xi‖2] ≤ σ2, inequality (3.2.1) becomes

P
(∥∥Xn

∥∥ ≥ σ√
n

+ t

)
+ P

(∥∥Xn

∥∥ ≤ − σ√
n
− t
)
≤ 2 exp

(
−nt

2

2c2

)
where Xn = 1

n

∑n
i=1Xi. 3
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We can specialize Example 3.27 to a situation that is very important for treatments of concen-
tration, sums of random vectors, and generalization bounds in machine learning.

Example 3.28 (Rademacher complexities): This example is actually a special case of Ex-
ample 3.27, but its frequent uses justify a more specialized treatment and consideration. Let
X be some space, and let F be some collection of functions f : X → R. Let εi ∈ {−1, 1} be a
collection of independent random sign vectors. Then the empirical Rademacher complexity of
F is

Rn(F | xn1 ) :=
1

n
E

[
sup
f∈F

n∑
i=1

εif(xi)

]
,

where the expectation is over only the random signs εi. (In some cases, depending on context
and convenience, one takes the absolute value |

∑
i εif(xi)|.) The Rademacher complexity of

F is
Rn(F) := E[Rn(F | Xn

1 )],

the expectation of the empirical Rademacher complexities.
If f : X → [b0, b1] for all f ∈ F , then the Rademacher complexity satisfies bounded differences,
because for any two sequences xn1 and zn1 differing in only element j, we have

n|Rn(F | xn1 )−Rn(F | zn1 )| ≤ E
[

sup
f∈F

n∑
i=1

εi(f(xi)−f(zi))

]
= E[sup

f∈F
εi(f(xj)−f(zj))] ≤ b1−b0.

Consequently, the empirical Rademacher complexity satisfies Rn(F | Xn
1 )−Rn(F) is (b1−b0)2

4n -
sub-Gaussian by Theorem 3.24. 3

These examples warrant more discussion, and it is possible to argue that many variants of these
random variables are well-concentrated. For example, instead of functions we may simply consider
an arbitrary set A ⊂ Rn and define the random variable

Z(A) := sup
a∈A
〈a, ε〉 = sup

a∈A

n∑
i=1

aiεi.

As a function of the random signs εi, we may write Z(A) = f(ε), and this is then a function
satisfying |f(ε) − f(ε′)| ≤ supa∈A |〈a, ε − ε′〉|, so that if ε and ε′ differ in index i, we have |f(ε) −
f(ε′)| ≤ 2 supa∈A |ai|. That is, Z(A)− E[Z(A)] is

∑n
i=1 supa∈A |ai|2-sub-Gaussian.

Example 3.29 (Rademacher complexity as a random vector): This view of Rademacher
complexity shows how we may think of Rademacher complexities as norms on certain spaces.
Indeed, if we consider a vector space L of linear functions on F , then we can define the F-
seminorm on L by ‖L‖F := supf∈F |L(f)|. In this case, we may consider the symmetrized
empirical distributions

P 0
n :=

1

n

n∑
i=1

εi1Xi f 7→ P 0
nf :=

1

n

n∑
i=1

εif(Xi)

as elements of this vector space L. (Here we have used 1Xi to denote the point mass at Xi.)
Then the Rademacher complexity is nothing more than the expected norm of P 0

n , a random
vector, as in Example 3.27. This view is somewhat sophisticated, but it shows that any general
results we may prove about random vectors, as in Example 3.27, will carry over immediately
to versions of the Rademacher complexity. 3
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3.3 Uniformity, basic generalization bounds, and complexity classes

Now that we have explored a variety of concentration inequalities, we show how to put them to use
in demonstrating that a variety of estimation, learning, and other types of procedures have nice
convergence properties. We first give a somewhat general collection of results, then delve deeper
by focusing on some standard tasks from machine learning.

3.3.1 Symmetrization and uniform laws

The first set of results we consider are uniform laws of large numbers, where the goal is to bound
means uniformly over different classes of functions. Frequently, such results are called Glivenko-
Cantelli laws, after the original Glivenko-Cantelli theorem, which shows that empirical distributions
uniformly converge. We revisit these ideas in the next chapter, where we present a number of more
advanced techniques based on ideas of metric entropy (or volume-like considerations); here we
present the basic ideas using our stability and bounded differencing tools.

The starting point is to define what we mean by a uniform law of large numbers. To do so, we
adopt notation (as in Example 3.29) we will use throughout the remainder of the book, reminding
readers as we go. For a sample X1, . . . , Xn on a space X , we let

Pn :=
1

n

n∑
i=1

1Xi

denote the empirical distribution on {Xi}ni=1, where 1Xi denotes the point mass at Xi. Then for
functions f : X → R (or more generally, any function f defined on X ), we let

Pnf := EPn [f(X)] =
1

n

n∑
i=1

f(Xi)

denote the empirical expectation of f evaluated on the sample, and we also let

Pf := EP [f(X)] =

∫
f(x)dP (x)

denote general expectations under a measure P . With this notation, we study uniform laws of
large numbers, which consist of proving results of the form

sup
f∈F
|Pnf − Pf | → 0, (3.3.1)

where convergence is in probability, expectation, almost surely, or with rates of convergence. When
we view Pn and P as (infinite-dimensional) vectors on the space of maps from F → R, then we
may define the (semi)norm ‖·‖F for any L : F → R by

‖L‖F := sup
f∈F
|L(f)|,

in which case Eq. (3.3.1) is equivalent to proving

‖Pn − P‖F → 0.
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Thus, roughly, we are simply asking questions about when random vectors converge to their expec-
tations.1

The starting point of this investigation considers bounded random functions, that is, F consists
of functions f : X → [a, b] for some −∞ < a ≤ b < ∞. In this case, the bounded differences
inequality (Proposition 3.26) immediately implies that expectations of ‖Pn − P‖F provide strong
guarantees on concentration of ‖Pn − P‖F .

Proposition 3.30. Let F be as above. Then

P (‖Pn − P‖F ≥ E[‖Pn − P‖F ] + t) ≤ exp

(
− 2nt2

(b− a)2

)
for t ≥ 0.

Proof Let Pn and P ′n be two empirical distributions, differing only in observation i (with Xi and
X ′i). We observe that

sup
f∈F
|Pnf − Pf | − sup

f∈F
|P ′nf − Pf | ≤ sup

f∈F

{
|Pnf − Pf | − |P ′nf − Pf |

}
≤ 1

n
sup
f∈F
|f(Xi)− f(X ′i)| ≤

b− a
n

by the triangle inequality. An entirely parallel argument gives the converse lower bound of − b−a
n ,

and thus Proposition 3.26 gives the result.

Proposition 3.30 shows that, to provide control over high-probability concentration of ‖Pn − P‖F ,
it is (at least in cases where F is bounded) sufficient to control the expectation E[‖Pn − P‖F ]. We
take this approach through the remainder of this section, developing tools to simplify bounding
this quantity.

Our starting points consist of a few inequalities relating expectations to symmetrized quantities,
which are frequently easier to control than their non-symmetrized parts. This symmetrization
technique is widely used in probability theory, theoretical statistics, and machine learning.

Proposition 3.31. Let Xi be independent random vectors on a space with norm ‖·‖ and let
εi{−1, 1} be independent random signs. Then for any p ≥ 1,

E

[∥∥∥∥ n∑
i=1

(Xi − E[Xi])

∥∥∥∥p
]
≤ 2pE

[∥∥∥∥ n∑
i=1

εiXi

∥∥∥∥p
]

Proof We introduce independent copies of the Xi and use these to symmetrize the quantity.
Indeed, let X ′i be an independent copy of Xi, and use Jensen’s inequality and the convexity of ‖·‖p
to observe that

E

[∥∥∥∥ n∑
i=1

(Xi − E[Xi])

∥∥∥∥p
]

= E

[∥∥∥∥ n∑
i=1

(Xi − E[X ′i])

∥∥∥∥p
]
≤ E

[∥∥∥∥ n∑
i=1

(Xi −X ′i)
∥∥∥∥p
]
.

Now, note that the distribution of Xi−X ′i is symmetric, so that Xi−X ′i
dist
= εi(Xi−X ′i), and thus

E

[∥∥∥∥ n∑
i=1

(Xi − E[Xi])

∥∥∥∥p
]
≤ E

[∥∥∥∥ n∑
i=1

εi(Xi −X ′i)
∥∥∥∥p
]
.

1Some readers may worry about measurability issues here. All of our applications will be in separable spaces,
so that we may take suprema with abandon without worrying about measurability, and consequently we ignore this
from now on.
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Multiplying and dividing by 2p, Jensen’s inequality then gives

E

[∥∥∥∥ n∑
i=1

(Xi − E[Xi])

∥∥∥∥p
]
≤ 2pE

[∥∥∥∥1

2

n∑
i=1

εi(Xi −X ′i)
∥∥∥∥p
]

≤ 2p−1

[
E

[∥∥∥∥ n∑
i=1

εiXi

∥∥∥∥p
]

+ E

[∥∥∥∥ n∑
i=1

εiX
′
i

∥∥∥∥p
]]

as desired.

We obtain as an immediate corollary a symmetrization bound for supremum norms on function
spaces. In this corollary, we use the symmetrized empirical measure

P 0
n :=

1

n

n∑
i=1

εi1Xi , P 0
nf =

1

n

n∑
i=1

εif(Xi).

The expectation of
∥∥P 0

n

∥∥
F is of course the Rademacher complexity (Examples 3.28 and 3.29), and

we have the following corollary.

Corollary 3.32. Let F be a class of functions f : X → R and Xi be i.i.d. Then E[‖Pn − P‖F ] ≤
2E[‖P 0

n‖F ].

From Corollary 3.32, it is evident that by controlling the expectation of the symmetrized process
E[‖P 0

n‖F ] we can derive concentration inequalities and uniform laws of large numbers. For example,
we immediately obtain that

P
(
‖Pn − P‖F ≥ 2E[‖P 0

n‖F ] + t
)
≤ exp

(
− 2nt2

(b− a)2

)
for all t ≥ 0 whenever F consists of functions f : X → [a, b].

There are numerous examples of uniform laws of large numbers, many of which reduce to
developing bounds on the expectation E[‖P 0

n‖F ], which is frequently possible via more advanced
techniques we develop in Chapter 5. A frequent application of these symmetrization ideas is to
risk minimization problems, as we discuss in the coming section; for these, it will be useful for us
to develop a few analytic and calculus tools. To better match the development of these ideas, we
return to the notation of Rademacher complexities, so that Rn(F) := E[

∥∥P 0
n

∥∥
F ]. The first is a

standard result, which we state for its historical value and the simplicity of its proof.

Proposition 3.33 (Massart’s finite class bound). Let F be any collection of functions with f :
X → R, and assume that σ2

n := n−1E[maxf∈F
∑n

i=1 f(Xi)
2] <∞. Then

Rn(F) ≤
√

2σ2
n log |F|√
n

.

Proof For each fixed xn1 , the random variable
∑n

i=1 εif(xi) is
∑n

i=1 f(xi)
2-sub-Gaussian. Now,

define σ2(xn1 ) := n−1 maxf∈F
∑n

i=1 f(xi)
2. Using the results of Exercise 3.7, that is, that E[maxj≤n Zj ] ≤√

2σ2 log n if the Zj are each σ2-sub-Gaussian, we see that

Rn(F | xn1 ) ≤
√

2σ2(xn1 ) log |F|√
n

.
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Jensen’s inequality that E[
√
·] ≤

√
E[·] gives the result.

A refinement of Massart’s finite class bound applies when the classes are infinite but, on a
collection X1, . . . , Xn, the functions f ∈ F may take on only a (smaller) number of values. In this
case, we define the empirical shatter coefficient of a collection of points x1, . . . , xn by SF (xn1 ) :=
card{(f(x1), . . . , f(xn)) | f ∈ F}, the number of distinct vectors of values (f(x1), . . . , f(xn)) the
functions f ∈ F may take. The shatter coefficient is the maximum of the empirical shatter coeffi-
cients over xn1 ∈ X n, that is, SF (n) := supxn1 SF (xn1 ). It is clear that SF (n) ≤ |F| always, but by
only counting distinct values, we have the following corollary.

Corollary 3.34 (A sharper variant of Massart’s finite class bound). Let F be any collection of
functions with f : X → R, and assume that σ2

n := n−1E[maxf∈F
∑n

i=1 f(Xi)
2] <∞. Then

Rn(F) ≤
√

2σ2
n log SF (n)√

n
.

Typical classes with small shatter coefficients include Vapnik-Chervonenkis classes of functions; we
do not discuss these further here, instead referring to one of the many books in machine learning
and empirical process theory in statistics.

The most important of the calculus rules we use are the comparison inequalities for Rademacher
sums, which allow us to consider compositions of function classes and maintain small complexity
measurers. We state the rule here; the proof is complex, so we defer it to Section 3.4.3

Theorem 3.35 (Ledoux-Talagrand Contraction). Let T ⊂ Rn be an arbitrary set and let φi : R→
R be 1-Lipschitz and satisfy φi(0) = 0. Then for any nondecreasing convex function Φ : R→ R+,

E

[
Φ

(
1

2
sup
t∈T

∣∣∣∣ n∑
i=1

φi(ti)εi

∣∣∣∣
)]
≤ E

[
Φ

(
sup
t∈T
〈t, ε〉

)]
.

A corollary to this theorem is suggestive of its power and applicability. Let φ : R → R be
L-Lipschitz, and for a function class F define φ ◦ F = {φ ◦ f | f ∈ F}. Then we have the following
corollary about Rademacher complexities of contractive mappings.

Corollary 3.36. Let F be an arbitrary function class and φ be L-Lipschitz. Then

Rn(φ ◦ F) ≤ 2LRn(F) + |φ(0)|/
√
n.

Proof The result is an almost immediate consequence of Theorem 3.35; we simply recenter our
functions. Indeed, we have

Rn(φ ◦ F | xn1 ) = E

[
sup
f∈F

∣∣∣∣ 1n
n∑
i=1

εi(φ(f(xi))− φ(0)) +
1

n

n∑
i=1

εiφ(0)

∣∣∣∣
]

≤ E

[
sup
f∈F

∣∣∣∣ 1n
n∑
i=1

εi(φ(f(xi))− φ(0))

∣∣∣∣
]

+ E

[∣∣∣∣ 1n
n∑
i=1

εiφ(0)

∣∣∣∣
]

≤ 2LRn(F) +
|φ(0)|√

n
,

where the final inequality follows by Theorem 3.35 (as g(·) = φ(·)− φ(0) is Lipschitz and satisfies
g(0) = 0) and that E[|

∑n
i=1 εi|] ≤

√
n.
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3.3.2 Generalization bounds

We now build off of our ideas on uniform laws of large numbers and Rademacher complexities to
demonstrate their applications in statistical machine learning problems, focusing on empirical risk
minimization procedures and related problems. We consider a setting as follows: we have a sample
Z1, . . . , Zn ∈ Z drawn i.i.d. according to some (unknown) distribution P , and we have a collection
of functions F from which we wish to select an f that “fits” the data well, according to some loss
measure ` : F × Z → R. That is, we wish to find a function f ∈ F minimizing the risk

L(f) := EP [`(f, Z)]. (3.3.2)

In general, however, we only have access to the risk via the empirical distribution of the Zi, and
we often choose f by minimizing the empirical risk

L̂n(f) :=
1

n

n∑
i=1

`(f, Zi). (3.3.3)

As written, this formulation is quite abstract, so we provide a few examples to make it somewhat
more concrete.

Example 3.37 (Binary classification problems): One standard problem—still abstract—that
motivates the formulation (3.3.2) is the binary classification problem. Here the data Zi come in
pairs (X,Y ), where X ∈ X is some set of covariates (independent variables) and Y ∈ {−1, 1}
is the label of example X. The function class F consists of functions f : X → R, and the goal
is to find a function f such that

P(sign(f(X)) 6= Y )

is small, that is, minimizing the risk E[`(f, Z)] where the loss is the 0-1 loss, `(f, (x, y)) =
1 {f(x)y ≤ 0}. 3

Example 3.38 (Multiclass classification): The multiclass classifcation problem is identical
to the binary problem, but instead of Y ∈ {−1, 1} we assume that Y ∈ [k] = {1, . . . , k} for
some k ≥ 2, and the function class F consists of (a subset of) functions f : X → Rk. The
goal is to find a function f such that, if Y = y is the correct label for a datapoint x, then
fy(x) > fl(x) for all l 6= y. That is, we wish to find f ∈ F minimizing

P (∃ l 6= Y such that fl(X) ≥ fY (X)) .

In this case, the loss function is the zero-one loss `(f, (x, y)) = 1 {maxl 6=y fl(x) ≥ fy(x)}. 3

Example 3.39 (Binary classification with linear functions): In the standard statistical
learning setting, the data x belong to Rd, and we assume that our function class F is in-
dexed by a set Θ ⊂ Rd, so that F = {fθ : fθ(x) = θ>x, θ ∈ Θ}. In this case, we may
use the zero-one loss, the convex hinge loss, or the (convex) logistic loss, which are variously
`zo(fθ, (x, y)) := 1

{
yθ>x ≤ 0

}
, and the convex losses

`hinge(fθ, (x, y)) =
[
1− yx>θ

]
+

and `logit(fθ, (x, y)) = log(1 + exp(−yx>θ)).

The hinge and logistic losses, as they are convex, are substantially computationally easier to
work with, and they are common choices in applications. 3
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The main motivating question that we ask is the following: given a sample Z1, . . . , Zn, if we
choose some f̂n ∈ F based on this sample, can we guarantee that it generalizes to unseen data? In
particular, can we guarantee that (with high probability) we have the empirical risk bound

L̂n(f̂n) =
1

n

n∑
i=1

`(f̂n, Zi) ≤ R(f̂n) + ε (3.3.4)

for some small ε? If we allow f̂n to be arbitrary, then this becomes clearly impossible: consider
the classification example 3.37, and set f̂n to be the “hash” function that sets f̂n(x) = y if the pair
(x, y) was in the sample, and otherwise f̂n(x) = −1. Then clearly L̂n(f̂n) = 0, while there is no
useful bound on R(f̂n).

Finite and countable classes of functions

In order to get bounds of the form (3.3.4), we require a few assumptions that are not too onerous.
First, throughout this section, we will assume that for any fixed function f , the loss `(f, Z) is
σ2-sub-Gaussian, that is,

EP [exp (λ(`(f, Z)− L(f)))] ≤ exp

(
λ2σ2

2

)
(3.3.5)

for all f ∈ F . (Recall that the risk functional L(f) = EP [`(f, Z)].) For example, if the loss is the
zero-one loss from classification problems, inequality (3.3.5) is satisfied with σ2 = 1

4 by Hoeffding’s

lemma. In order to guarantee a bound of the form (3.3.5) for a function f̂ chosen dependent on
the data, in this section we give uniform bounds, that is, we would like to bound

P
(

there exists f ∈ F s.t. L(f) > L̂n(f) + t
)

or P

(
sup
f∈F

∣∣∣L̂n(f)−R(f)
∣∣∣ > t

)
.

Such uniform bounds are certainly sufficient to guarantee that the empirical risk is a good proxy
for the true risk L, even when f̂n is chosen based on the data.

Now, recalling that our set of functions or predictors F is finite or countable, let us suppose
that for each f ∈ F , we have a complexity measure c(f)—a penalty—such that∑

f∈F
e−c(f) ≤ 1. (3.3.6)

This inequality should look familiar to the Kraft inequality—which we will see in the coming
chapters—from coding theory. As soon as we have such a penalty function, however, we have the
following result.

Theorem 3.40. Let the loss `, distribution P on Z, and function class F be such that `(f, Z) is
σ2-sub-Gaussian for each f ∈ F , and assume that the complexity inequality (3.3.6) holds. Then
with probability at least 1− δ over the sample Z1:n,

L(f) ≤ L̂n(f) +

√
2σ2

log 1
δ + c(f)

n
for all f ∈ F .
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Proof First, we note that by the usual sub-Gaussian concentration inequality (Corollary 3.9) we
have for any t ≥ 0 and any f ∈ F that

P
(
L(f) ≥ L̂n(f) + t

)
≤ exp

(
− nt

2

2σ2

)
.

Now, if we replace t by
√
t2 + 2σ2c(f)/n, we obtain

P
(
L(f) ≥ L̂n(f) +

√
t2 + 2σ2c(f)/n

)
≤ exp

(
− nt

2

2σ2
− c(f)

)
.

Then using a union bound, we have

P
(
∃ f ∈ F s.t. L(f) ≥ L̂n(f) +

√
t2 + 2σ2c(f)/n

)
≤
∑
f∈F

exp

(
− nt

2

2σ2
− c(f)

)

= exp

(
− nt

2

2σ2

)∑
f∈F

exp(−c(f))︸ ︷︷ ︸
≤1

.

Setting t2 = 2σ2 log 1
δ/n gives the result.

As one classical example of this setting, suppose that we have a finite class of functions F . Then
we can set c(f) = log |F|, in which case we clearly have the summation guarantee (3.3.6), and we
obtain

L(f) ≤ L̂n(f) +

√
2σ2

log 1
δ + log |F|
n

uniformly for f ∈ F

with probability at least 1− δ. To make this even more concrete, consider the following example.

Example 3.41 (Floating point classifiers): We implement a linear binary classifier using
double-precision floating point values, that is, we have fθ(x) = θ>x for all θ ∈ Rd that may
be represented using d double-precision floating point numbers. Then for each coordinate of
θ, there are at most 264 representable numbers; in total, we must thus have |F| ≤ 264d. Thus,
for the zero-one loss `zo(fθ, (x, y)) = 1

{
θ>xy ≤ 0

}
, we have

L(fθ) ≤ L̂n(fθ) +

√
log 1

δ + 45d

2n

for all representable classifiers simultaneously, with probability at least 1− δ, as the zero-one
loss is 1/4-sub-Gaussian. (Here we have used that 64 log 2 < 45.) 3

We also note in passing that by replacing δ with δ/2 in the bounds of Theorem 3.40, a union
bound yields the following two-sided corollary.

Corollary 3.42. Under the conditions of Theorem 3.40, we have

∣∣∣L̂n(f)− L(f)
∣∣∣ ≤

√
2σ2

log 2
δ + c(f)

n
for all f ∈ F

with probability at least 1− δ.
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Large classes

When the collection of functions is (uncountably) infinite, it can be more challenging to obtain
strong generalization bounds. There still exist numerous tools for these ideas, however, and we
present a few of the more basic and common of them. We return in the next chapter to alterna-
tive approaches based on randomization and divergence measures, which provide guarantees with
somewhat similar structure to those we present here.

Let us begin by considering a few examples, after which we provide examples showing how to
derive explicit bounds using Rademacher complexities.

Example 3.43 (Rademacher complexity of the `2-ball): Let Θ = {θ ∈ Rd | ‖θ‖2 ≤ r}, and
consider the class of linear functionals F := {fθ(x) = θTx, θ ∈ Θ}. Then

Rn(F | xn1 ) ≤ r

n

√√√√ n∑
i=1

‖xi‖22,

because we have

Rn(F | xn1 ) =
r

n
E

[∥∥∥∥ n∑
i=1

εixi

∥∥∥∥
2

]
≤ r

n

√√√√E

[∥∥∥∥ n∑
i=1

εixi

∥∥∥∥2

2

]
=
r

n

√√√√ n∑
i=1

‖xi‖22,

as desired. 3

In high-dimensional situations, it is sometimes useful to consider more restrictive function
classes, for example, those indexed by vectors in an `1-ball.

Example 3.44 (Rademacher complexity of the `1-ball): In contrast to the previous example,
suppose that Θ = {θ ∈ Rd | ‖θ‖1 ≤ r}, and consider the linear class F := {fθ(x) = θTx, θ ∈ Θ}.
Then

Rn(F | xn1 ) =
r

n
E

[∥∥∥∥ n∑
i=1

εixi

∥∥∥∥
∞

]
.

Now, each coordinate j of
∑n

i=1 εixi is
∑n

i=1 x
2
ij-sub-Gaussian, and thus using that E[maxj≤d Zj ] ≤√

2σ2 log d for arbitrary σ2-sub-Gaussian Zj (see Exercise 3.7), we have

Rn(F | xn1 ) ≤ r

n

√√√√2 log(2d) max
j

n∑
i=1

x2
ij .

To facilitate comparison with Example 3.44, suppose that the vectors xi all satisfy ‖xi‖∞ ≤ b.
In this case, the preceding inequality implies that Rn(F | xn1 ) ≤ rb

√
2 log(2d)/

√
n. In contrast,

the `2-norm of such xi may satisfy ‖xi‖2 = b
√
d, so that the bounds of Example 3.43 scale

instead as rb
√
d/
√
n, which can be exponentially larger. 3

These examples are sufficient to derive a few sophisticated risk bounds. We focus on the case
where we have a loss function applied to some class with reasonable Rademacher complexity, in
which case it is possible to recenter the loss class and achieve reasonable complexity bounds. The
coming proposition does precisely this in the case of margin-based binary classification. Consider
points (x, y) ∈ X × {±1}, and let F be an arbitrary class of functions f : X → R and L =
{(x, y) 7→ `(yf(x))}f∈F be the induced collection of losses. As a typical example, we might have
`(t) = [1− t]+, `(t) = e−t, or `(t) = log(1 + e−t). We have the following proposition.
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Proposition 3.45. Let F and X be such that supx∈X |f(x)| ≤ M for f ∈ F and assume that

` is L-Lipschitz. Define the empirical and population risks L̂n(f) := Pn`(Y f(X)) and L(f) :=
P`(Y f(X)). Then

P

(
sup
f∈F
|L̂n(f)− L(f)| ≥ 4LRn(F) + t

)
≤ 2 exp

(
− nt2

2L2M2

)
for t ≥ 0.

Proof We may recenter the class L, that is, replace `(·) with `(·) − `(0), without changing
L̂n(f)− L(f). Call this class L0, so that ‖Pn − P‖L = ‖Pn − P‖L0 . This recentered class satisfies
bounded differences with constant 2ML, as |`(yf(x))− `(y′f(x′))| ≤ L|yf(x)− y′f(x′)| ≤ 2LM , as
in the proof of Proposition 3.30. Applying Proposition 3.30 and then Corollary 3.32 and gives that
P(supf∈F |L̂n(f)− L(f)| ≥ 2Rn(L0) + t) ≤ exp(− nt2

2M2L2 ) for t ≥ 0. Then applying the contraction
inequality (Theorem 3.35) yields Rn(L0) ≤ 2LRn(F), giving the result.

Let us give a few example applications of these ideas.

Example 3.46 (Support vector machines and hinge losses): In the support vector machine
problem, we receive data (Xi, Yi) ∈ Rd × {±1}, and we seek to minimize average of the losses
`(θ; (x, y)) =

[
1− yθTx

]
+

. We assume that the space X has ‖x‖2 ≤ b for x ∈ X and that

Θ = {θ ∈ Rd | ‖θ‖2 ≤ r}. Applying Proposition 3.45 gives

P
(

sup
θ∈Θ
|Pn`(θ; (X,Y ))− P`(θ; (X,Y ))| ≥ 4Rn(FΘ) + t

)
≤ exp

(
− nt2

2r2b2

)
,

where FΘ = {fθ(x) = θTx}θ∈Θ. Now, we apply Example 3.43, which implies that

Rn(φ ◦ FΘ) ≤ 2Rn(Fθ) ≤
2rb√
n
.

That is, we have

P
(

sup
θ∈Θ
|Pn`(θ; (X,Y ))− P`(θ; (X,Y ))| ≥ 4rb√

n
+ t

)
≤ exp

(
− nt2

2(rb)2

)
,

so that Pn and P become close at rate roughly rb/
√
n in this case. 3

Example 3.46 is what is sometimes called a “dimension free” convergence result—there is no
esxplicit dependence on the dimension d of the problem, except as the radii r and b make explicit.
One consequence of this is that if x and θ instead belong to a Hilbert space (potentiall infinite
dimensional) with inner product 〈·, ·〉 and norm ‖x‖2 = 〈x, x〉, but for which we are guaranteed
that ‖θ‖ ≤ r and similarly ‖x‖ ≤ b, then the result still applies.

Extending this to other function classes is reasonably straightforward, and we present a few
examples in the exercises.
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3.3.3 Structural risk minimization and adaptivity

In general, for a given function class F , we can always decompose the excess risk into the approxi-
mation/estimation error decomposition. That is, let

L∗ = inf
f
L(f),

where the preceding infimum is taken across all (measurable) functions. Then we have

L(f̂n)− L∗ = L(f̂n)− inf
f∈F

L(f)︸ ︷︷ ︸
estimation

+ inf
f∈F

L(f)− L∗︸ ︷︷ ︸
approximation

. (3.3.7)

There is often a tradeoff between these two, analogous to the bias/variance tradeoff in classical
statistics; if the approximation error is very small, then it is likely hard to guarantee that the esti-
mation error converges quickly to zero, while certainly a constant function will have low estimation
error, but may have substantial approximation error. With that in mind, we would like to develop
procedures that, rather than simply attaining good performance for the class F , are guaranteed
to trade-off in an appropriate way between the two types of error. This leads us to the idea of
structural risk minimization.

In this scenario, we assume we have a sequence of classes of functions, F1,F2, . . ., of increasing
complexity, meaning that F1 ⊂ F2 ⊂ . . .. For example, in a linear classification setting with
vectors x ∈ Rd, we might take a sequence of classes allowing increasing numbers of non-zeros in
the classification vector θ:

F1 :=
{
fθ(x) = θ>x such that ‖θ‖0 ≤ 1

}
, F2 :=

{
fθ(x) = θ>x such that ‖θ‖0 ≤ 2

}
, . . . .

More broadly, let {Fk}k∈N be a (possibly infinite) increasing sequence of function classes. We
assume that for each Fk and each n ∈ N, there exists a constant Cn,k(δ) such that we have the
uniform generalization guarantee

P

(
sup
f∈Fk

∣∣∣L̂n(f)− L(f)
∣∣∣ ≥ Cn,k(δ)

)
≤ δ · 2−k.

For example, by Corollary 3.42, if F is finite we may take

Cn,k(δ) =

√
2σ2

log |Fk|+ log 1
δ + k log 2

n
.

(We will see in subsequent sections of the course how to obtain other more general guarantees.)
We consider the following structural risk minimization procedure. First, given the empirical

risk L̂n, we find the model collection k̂ minimizing the penalized risk

k̂ := argmin
k∈N

{
inf
f∈Fk

L̂n(f) + Cn,k(δ)

}
. (3.3.8a)

We then choose f̂ to minimize the risk over the estimated “best” class F
k̂
, that is, set

f̂ := argmin
f∈F

k̂

L̂n(f). (3.3.8b)

With this procedure, we have the following theorem.
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Theorem 3.47. Let f̂ be chosen according to the procedure (3.3.8a)–(3.3.8b). Then with probability
at least 1− δ, we have

L(f̂) ≤ inf
k∈N

inf
f∈Fk

{L(f) + 2Cn,k(δ)} .

Proof First, we have by the assumed guarantee on Cn,k(δ) that

P

(
∃ k ∈ N and f ∈ Fk such that sup

f∈Fk

∣∣∣L̂n(f)− L(f)
∣∣∣ ≥ Cn,k(δ)

)

≤
∞∑
k=1

P

(
∃ f ∈ Fk such that sup

f∈Fk

∣∣∣L̂n(f)− L(f)
∣∣∣ ≥ Cn,k(δ)

)
≤
∞∑
k=1

δ · 2−k = δ.

On the event that supf∈Fk |L̂n(f)−L(f)| < Cn,k(δ) for all k, which occurs with probability at least
1− δ, we have

L(f̂) ≤ L̂n(f) + C
n,k̂

(δ) = inf
k∈N

inf
f∈Fk

{
L̂n(f) + Cn,k(δ)

}
≤ inf

k∈N
inf
f∈Fk

{L(f) + 2Cn,k(δ)}

by our choice of f̂ . This is the desired result.

We conclude with a final example, using our earlier floating point bound from Example 3.41,
coupled with Corollary 3.42 and Theorem 3.47.

Example 3.48 (Structural risk minimization with floating point classifiers): Consider again
our floating point example, and let the function class Fk consist of functions defined by at
most k double-precision floating point values, so that log |Fk| ≤ 45d. Then by taking

Cn,k(δ) =

√
log 1

δ + 65k log 2

2n

we have that |L̂n(f)−L(f)| ≤ Cn,k(δ) simultaneously for all f ∈ Fk and all Fk, with probability
at least 1− δ. Then the empirical risk minimization procedure (3.3.8) guarantees that

L(f̂) ≤ inf
k∈N

 inf
f∈Fk

L(f) +

√
2 log 1

δ + 91k

n

 .

Roughly, we trade between small risk L(f)—as the risk inff∈Fk L(f) must be decreasing in

k—and the estimation error penalty, which scales as
√

(k + log 1
δ )/n. 3

3.4 Technical proofs

3.4.1 Proof of Theorem 3.10

(1) implies (2) Let K1 = 1. Using the change of variables identity that for a nonnegative
random variable Z and any k ≥ 1 we have E[Zk] = k

∫∞
0 tk−1P(Z ≥ t)dt, we find

E[|X|k] = k

∫ ∞
0

tk−1P(|X| ≥ t)dt ≤ 2k

∫ ∞
0

tk−1 exp

(
− t

2

σ2

)
dt = kσk

∫ ∞
0

uk/2−1e−udu,
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where for the last inequality we made the substitution u = t2/σ2. Noting that this final integral is
Γ(k/2), we have E[|X|k] ≤ kσkΓ(k/2). Because Γ(s) ≤ ss for s ≥ 1, we obtain

E[|X|k]1/k ≤ k1/kσ
√
k/2 ≤ e1/eσ

√
k.

Thus (2) holds with K2 = e1/e.

(2) implies (3) Let σ = ‖X‖ψ2
= supk≥1 k

− 1
2E[|X|k]1/k, so that K2 = 1 and E[|X|k] ≤ k

k
2 σ for

all k. For K3 ∈ R+, we thus have

E[exp(X2/(K3σ
2))] =

∞∑
k=0

E[X2k]

k!K2k
3 σ2k

≤
∞∑
k=0

σ2k(2k)k

k!K2k
3 σ2k

(i)

≤
∞∑
k=0

(
2e

K2
3

)k
where inequality (i) follows because k! ≥ (k/e)k, or 1/k! ≤ (e/k)k. Noting that

∑∞
k=0 α

k = 1
1−α ,

we obtain (3) by taking K3 = e
√

2/(e− 1) ≈ 2.933.

(3) implies (4) Let us take K3 = 1. We claim that (4) holds with K4 = 3
4 . We prove this

result for both small and large λ. First, note the (highly non-standard, but true!) inequality that

ex ≤ x+ e
9x2

16 for all x. Then we have

E[exp(λX)] ≤ E[λX]︸ ︷︷ ︸
=0

+E
[
exp

(
9λ2X2

16

)]

Now note that for |λ| ≤ 4
3σ , we have 9λ2σ2/16 ≤ 1, and so by Jensen’s inequality,

E
[
exp

(
9λ2X2

16

)]
= E

[
exp(X2/σ2)

9λ2σ2

16

]
≤ e

9λ2σ2

16 .

For large λ, we use the simpler Fenchel-Young inequality, that is, that λx ≤ λ2

2c + cx2

2 , valid for all
c ≥ 0. Then we have for any 0 ≤ c ≤ 2 that

E[exp(λX)] ≤ e
λ2σ2

2c E
[
exp

(
cX2

2σ2

)]
≤ e

λ2σ2

2c e
c
2 ,

where the final inequality follows from Jensen’s inequality. If |λ| ≥ 4
3σ , then 1

2 ≤
9
32λ

2σ2, and we
have

E[exp(λX)] ≤ inf
c∈[0,2]

e[ 1
2c

+ 9c
32

]λ2σ2
= exp

(
3λ2σ2

4

)
.

(4) implies (1) This is the content of Proposition 3.7, with K4 = 1
2 and K1 = 2.

3.4.2 Proof of Theorem 3.14

(1) implies (2) As in the proof of Theorem 3.10, we use that for a nonnegative random variable
Z we have E[Zk] = k

∫∞
0 tk−1P(Z ≥ t)dt. Let K1 = 1. Then

E[|X|k] = k

∫ ∞
0

tk−1P(|X| ≥ t)dt ≤ 2k

∫ ∞
0

tk−1 exp(−t/σ)dt = 2kσk
∫ ∞

0
uk−1 exp(−u)du,

where we used the substitution u = t/σ. Thus we have E[|X|k] ≤ 2Γ(k+1)σk, and using Γ(k+1) ≤
kk yields E[|X|k]1/k ≤ 21/kkσ, so that (2) holds with K2 ≤ 2.
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(2) implies (3) Let K2 = 1, and note that

E[exp(X/(K3σ))] =
∞∑
k=0

E[Xk]

Kk
3σ

kk!
≤
∞∑
k=0

kk

k!
· 1

Kk
3

(i)

≤
∞∑
k=0

(
e

K3

)k
,

where inequality (i) used that k! ≥ (k/e)k. Taking K3 = e2/(e− 1) < 5 gives the result.

(3) implies (1) If E[exp(X/σ)] ≤ e, then for t ≥ 0

P(X ≥ t) ≤ E[exp(X/σ)]e−t/σ ≤ e1−t/σ.

With the same result for the negative tail, we have

P(|X| ≥ t) ≤ 2e1−t/σ ∧ 1 ≤ 2e−
2t
5σ ,

so that (1) holds with K1 = 5
2 .

(2) if and only if (4) Thus, we see that up to constant numerical factors, the definition ‖X‖ψ1
=

supk≥1 k
−1E[|X|k]1/k has the equivalent statements

P(|X| ≥ t) ≤ 2 exp(−t/(K1 ‖X‖ψ1
)) and E[exp(X/(K3 ‖X‖ψ1

))] ≤ e.

Now, let us assume that (2) holds with K2 = 1, so that σ = ‖X‖ψ1
and that E[X] = 0. Then we

have E[Xk] ≤ kk ‖X‖kψ1
, and

E[exp(λX)] = 1 +
∞∑
k=2

λkE[Xk]

k!
≤ 1 +

∞∑
k=2

λk ‖X‖kψ1
· k

k

k!
≤ 1 +

∞∑
k=2

λk ‖X‖kψ1
ek,

the final inequality following because k! ≥ (k/e)k. Now, if |λ| ≤ 1
2e‖X‖ψ1

, then we have

E[exp(λX)] ≤ 1 + λ2e2 ‖X‖ψ1

∞∑
k=0

(λ ‖X‖ψ1
e)k ≤ 1 + 2e2 ‖X‖2ψ1

λ2,

as the final sum is at most
∑∞

k=0 2−k = 2. Using 1 + x ≤ ex gives that (2) implies (4). For
the opposite direction, we may simply use that if (4) holds with K4 = 1 and K ′4 = 1, then
E[exp(X/σ)] ≤ exp(1), so that (3) holds.

3.4.3 Proof of Theorem 3.35

JCD Comment: I would like to write this. For now, check out Ledoux and Talagrand [103,
Theorem 4.12] or Koltchinskii [98, Theorem 2.2].

3.5 Bibliography

A few references on concentration, random matrices, and entropies include Vershynin’s extraor-
dinarily readable lecture notes [134], the comprehensive book of Boucheron, Lugosi, and Massart
[30], and the more advanced material in Buldygin and Kozachenko [36]. Many of our arguments
are based off of those of Vershynin and Boucheron et al.
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3.6 Exercises

Question 3.1 (Concentration of bounded random variables): Let X be a random variable taking
values in [a, b], where −∞ < a ≤ b < ∞. In this question, we show Hoeffding’s Lemma, that is,
that X is sub-Gaussian: for all λ ∈ R, we have

E[exp(λ(X − E[X]))] ≤ exp

(
λ2(b− a)2

8

)
.

(a) Show that Var(X) ≤ ( b−a2 )2 = (b−a)2

4 for any random variable X taking values in [a, b].

(b) Let
ϕ(λ) = logE[exp(λ(X − E[X]))].

Assuming that E[X] = 0 (convince yourself that this is no loss of generality) show that

ϕ(0) = 0, ϕ′(0) = 0, ϕ′′(t) =
E[X2etX ]

E[etX ]
− E[XetX ]2

E[etX ]2
.

(You may assume that derivatives and expectations commute, which they do in this case.)

(c) Construct a random variable Yt, defined for t ∈ R, such that Yt ∈ [a, b] and

Var(Yt) = ϕ′′(t).

(You may assume X has a density for simplicity.)

(d) Using the result of part (c), show that ϕ(λ) ≤ λ2(b−a)2

8 for all λ ∈ R.

Question 3.2: In this question, we show how to use Bernstein-type (sub-exponential) inequalities
to give sharp convergence guarantees. Recall (Example 3.13, Corollary 3.17, and inequality (3.1.8))
that ifXi are independent bounded random variables with |Xi−E[X]| ≤ b for all i and Var(Xi) ≤ σ2,
then

max

{
P

(
1

n

n∑
i=1

Xi ≥ E[X] + t

)
,P

(
1

n

n∑
i=1

Xi ≤ E[X]− t

)}
≤ exp

(
−1

2
min

{
5

6

nt2

σ2
,
nt

2b

})
.

We consider minimization of loss functions ` over finite function classes F with ` ∈ [0, 1], so that if
L(f) = E[`(f, Z)] then |`(f, Z)− L(f)| ≤ 1. Throughout this question, we let

L? = min
f∈F

L(f) and f? ∈ argmin
f∈F

L(f).

We will show that, roughly, a procedure based on picking an empirical risk minimizer is unlikely to
choose a function f ∈ F with bad performance, so that we obtain faster concentration guarantees.

(a) Argue that for any f ∈ F

P
(
L̂(f) ≥ L(f) + t

)
∨ P

(
L̂(f) ≤ L(f)− t

)
≤ exp

(
−1

2
min

{
5

6

nt2

L(f)(1− L(f))
,
nt

2

})
.

66



Stanford Statistics 311/Electrical Engineering 377 John Duchi

(b) Define the set of “bad” prediction functions Fε bad := {f ∈ F : L(f) ≥ L? + ε}. Show that for
any fixed ε ≥ 0 and any f ∈ F2εbad, we have

P
(
L̂(f) ≤ L? + ε

)
≤ exp

(
−1

2
min

{
5

6

nε2

L?(1− L?) + ε(1− ε)
,
nε

2

})
.

(c) Let f̂n ∈ argminf∈F L̂(f) denote the empirical minimizer over the class F . Argue that it is
likely to have good performance, that is, for all ε ≥ 0 we have

P
(
L(f̂n) ≥ L(f?) + 2ε

)
≤ card(F) · exp

(
−1

2
min

{
5

6

nε2

L?(1− L?) + ε(1− ε)
,
nε

2

})
.

(d) Using the result of part (c), argue that with probability at least 1− δ,

L(f̂n) ≤ L(f?) +
4 log |F|δ

n
+

√
12

5
·

√
L?(1− L?) · log |F|δ√

n
.

Why is this better than an inequality based purely on the boundedness of the loss `, such as
Theorem 3.40 or Corollary 3.42? What happens when there is a perfect risk minimizer f??

Question 3.3 (Likelihood ratio bounds and concentration): Consider a data release problem,
where given a sample x, we release a sequence of data Z1, Z2, . . . , Zn belonging to a discrete set Z,
where Zi may depend on Zi−1

1 and x. We assume that the data has limited information about x
in the sense that for any two samples x, x′, we have the likelihood ratio bound

p(zi | x, zi−1
1 )

p(zi | x′, zi−1
1 )

≤ eε.

Let us control the amount of “information” (in the form of an updated log-likelihood ratio) released
by this sequential mechanism. Fix x, x′, and define

L(z1, . . . , zn) := log
p(z1, . . . , zn | x)

p(z1, . . . , zn | x′)
.

(a) Show that, assuming the data Zi are drawn conditional on x,

P (L(Z1, . . . , Zn) ≥ nε(eε − 1) + t) ≤ exp

(
− t2

2nε2

)
.

Equivalently, show that

P
(
L(Z1, . . . , Zn) ≥ nε(eε − 1) + ε

√
2n log(1/δ)

)
≤ δ.

(b) Let γ ∈ (0, 1). Give the largest value of ε you can that is sufficient to guarantee that for any
test Ψ : Zn → {x, x′}, we have

Px(Ψ(Zn1 ) 6= x) + Px′(Ψ(Zn1 ) 6= x′) ≥ 1− γ,

where Px and Px′ denote the sampling distribution of Zn1 under x and x′, respectively?
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Question 3.4 (Marcinkiewicz-Zygmund inequality): Let Xi be independent random variables
with E[Xi] = 0 and E[|Xi|p] <∞, where 1 ≤ p <∞. Prove that

E

[∣∣∣∣ n∑
i=1

Xi

∣∣∣∣p
]
≤ CpE

[( n∑
i=1

|Xi|2
)p/2]

where Cp is a constant (that depends on p). As a corollary, derive that if E[|Xi|p] ≤ σp and p ≥ 2,
then

E

[∣∣∣∣ 1n
n∑
i=1

Xi

∣∣∣∣p
]
≤ Cp

σp

np/2
.

That is, sample means converge quickly to zero in higher moments. Hint: For any fixed x ∈ Rn, if
εi are i.i.d. uniform signs εi ∈ {±1}, then εTx is sub-Gaussian.

Question 3.5 (Small balls and anti-concentration): Let X be a nonnegative random variable
satisfying P(X ≤ ε) ≤ cε for some c <∞ and all ε > 0. Argue that if Xi are i.i.d. copies of X, then

P

(
1

n

n∑
i=1

Xi ≥ t

)
≥ 1− exp(−2n [1/2− 2ct]2+)

for all t.

Question 3.6 (Lipschitz functions remain sub-Gaussian): Let X be σ2-sub-Gaussian and f :
R→ R be L-Lipschitz, meaning that |f(x)− f(y)| ≤ L|x− y| for all x, y. Prove that there exists a
numerical constant C <∞ such that f(X) is CL2σ2-sub-Gaussian.

Question 3.7 (Sub-gaussian maxima): Let X1, . . . , Xn be σ2-sub-gaussian (not necessarily in-
dependent) random variables. Show that

(a) E[maxiXi] ≤
√

2σ2 log n.

(b) There exists a numerical constant C <∞ such that E[maxi |Xi|p] ≤ (Cpσ2 log k)p/2.

Question 3.8: Consider a binary classification problem with logistic loss `(θ; (x, y)) = log(1 +
exp(−yθTx)), where θ ∈ Θ := {θ ∈ Rd | ‖θ‖1 ≤ r} and y ∈ {±1}. Assume additionally that the

space X ⊂ {x ∈ Rd | ‖x‖∞ ≤ b}. Define the empirical and population risks L̂n(θ) := Pn`(θ; (X,Y ))

and L(θ) := P`(θ; (X,Y )), and let θ̂n = argminθ∈Θ L̂(θ). Show that with probability at least 1− δ
over (Xi, Yi)

iid∼ P ,

L(θ̂n) ≤ inf
θ∈Θ

L(θ) + C
rb
√

log d
δ√

n

where C <∞ is a numerical constant (you need not specify this).
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Chapter 4

Generalization and stability

JCD Comment: Write an intro to this section

Intro: relate sample expectations to population expectations.
Throughout this section, we will use a convenient notational shorthand for expectation, where

for a probability distribution P on X and function f : X → R, we let

Pf := EP [f(X)] =

∫
f(x)dP (x),

so that Pnf = 1
n

∑n
i=1 f(Xi) denotes the empirical expectation when Pn is the empirical measure

on the sample {X1, . . . , Xn}.

4.1 Starting point

The starting point of all of our generalization bounds is a surprisingly simply variational result,
which relates expectations, moment generating functions, and the KL-divergence in one single
equality. It turns out that this inequality, by relating means with moment generating functions
and divergences, allows us to prove generalization bounds based on information-theoretic tools and
stability.

Theorem 4.1 (Donsker-Varadhan representation). Let P and Q be distributions on a common
space X . Then

Dkl (P ||Q) = sup
g

{
EP [g(X)]− logEQ[eg(X)]

}
,

where the supremum is taken over measurable functions g : X → R such that EQ[eg(X)] <∞.

Proof We may assume that P is absolutely continuous with respect to Q, as otherwise both
sides are infinite by inspection. Thus, we assume without loss of generality that P and Q have
densities p and q.

Attainment in the equality is easy: we simply take g(x) = log p(x)
q(x) , so that EQ[eg(X)] = 1. To

show that the right hand side is never larger than Dkl (P ||Q) requires a bit more work. To that
end, let g be any function such that EQ[eg(X)] < ∞, and define the random variable Zg(x) =
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eg(x)/EQ[eg(X)], so that EQ[Z] = 1. Then using the absolute continuity of P w.r.t. Q, we have

EP [logZg] = EP
[
log

p(X)

q(X)
+ log

(
Zg(X)

q(X)

p(X)

)]
= Dkl (P ||Q) + EP

[
log

(
Zg
dQ

dP

)]
≤ Dkl (P ||Q) + logEP

[
dQ

dP
Zg

]
= Dkl (P ||Q) + logEQ[Zg].

As EQ[Zg] = 1, using that EP [logZg] = EP [g(X)]− logEQ[eg(X)] gives the result.

The Donsker-Varadhan representation already gives a hint that we can use some information-
theoretic techniques to control the difference between an empirical sample and its expectation, at
least in an average sense. In particular, we see that for any function g, we have

EP [g(X)] ≤ Dkl (P ||Q) + logEQ[eg(X)]

for any random variable X. Now, changing this on its head a bit, suppose that we consider a
collection of functions F and put two probability measures π and π0 on F , and consider Pnf −Pf ,
where we consider f a random variable f ∼ π or f ∼ π0. Then a consequence of the Donsker-
Varadhan theorem is that∫

(Pnf − Pf)dπ(f) ≤ Dkl (π||π0) + log

∫
exp(Pnf − Pf)dπ0(f)

for any π, π0. While this inequality is a bit naive—bounding a difference by an exponent seems
wasteful—as we shall see, it has substantial applications when we can upper bound the KL-
divergence Dkl (π||π0).

4.2 PAC-Bayes bounds

JCD Comment: Write an intro to this section

Let F be a collection of functions f : X → R, and assume that each function f is σ2-sub-
Gaussian, which we recall (Definition 3.1) means that E[eλ(f(X)−Pf)] ≤ exp(λ2σ2/2) for all λ ∈ R,
where Pf = EP [f(X)] =

∫
f(x)dP (x) denotes the expectation of f under P .

Lemma 4.2. Let Z be a σ2-sub-Gaussian random variable. Then for λ ≥ 0,

E[eλZ
2
] ≤ 1√

[1− 2σ2λ]+

.

This is Example 3.11.
With Lemma 4.2 and Theorem 4.1 in place, we can prove the following PAC-Bayes theorem.

Theorem 4.3. Let Π be the collection of all priors (probability distributions) on the set F . With
probability at least 1− δ,∫

(Pnf − Pf)2dπ(f) ≤ 8σ2

3

Dkl (π||π0) + log 2
δ

n
simultaneously for all π ∈ Π.
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Proof Without loss of generality, we assume that Pf = 0 for all f ∈ F , and recall that Pnf =
1
n

∑n
i=1 f(Xi) is the empirical mean of f . Then we know that Pnf is σ2/n-sub-Gaussian, and

Lemma 4.2 implies that E[exp(λ(Pnf)2)] ≤
[
1− 2λσ2/n

]−1/2

+
for any f , and thus for any “prior”

π0 on f we have

E
[∫

exp(λ(Pnf)2)dπ0(f)

]
≤
[
1− 2λσ2/n

]−1/2

+
.

Consequently, taking λ = λn := 3n
8σ2 , we obtain

E
[∫

exp(λn(Pnf)2)dπ0(f)

]
= E

[∫
exp

(
3n

8σ2
(Pnf)2

)
dπ0(f)

]
≤ 2.

Markov’s inequality thus implies that

P
(∫

exp
(
λn(Pnf)2

)
dπ0(f) ≥ 2

δ

)
≤ δ, (4.2.1)

where the probability is over Xi
iid∼ P .

Now, we use the Donsker-Varadhan equality (Theorem 4.1). Letting λ > 0, we define the
function g(f) = λ(Pnf)2, so that for any two distributions π and π0 on F , we have

1

λ

∫
g(f)dπ(f) =

∫
(Pnf)2dπ(f) ≤

Dkl (π||π0) + log
∫

exp(λ(Pnf)2)dπ0(f)

λ
.

This holds without any probabilistic qualifications, so using the application (4.2.1) of Markov’s
inequality with λ = λn, we thus see that with probability at least 1− δ over X1, . . . , Xn, simulta-
neously for all distributions π,∫

(Pnf)2dπ(f) ≤ 8σ2

3

Dkl (π||π0) + log 2
δ

n
.

This is the desired result (as we have assumed that Pf = 0 w.l.o.g.).

By Jensen’s inequality (or Cauchy-Schwarz), it is immediate from Theorem 4.3 that we also
have ∫

|Pnf − Pf |dπ(f) ≤

√
8σ2

3

Dkl (π||π0) + log 2
δ

n
simultaneously for all π ∈ Π (4.2.2)

with probability at least 1− δ, so that Eπ[|Pnf −Pf |] is with high probability of order 1/
√
n. The

inequality (4.2.2) is the original form of the PAC-Bayes bound due to McAllester, with slightly
sharper constants and improved logarithmic dependence. The key is that stability, in the form of a
prior π0 and posterior π closeness, allow us to achieve reasonably tight control over the deviations
of random variables and functions with high probability.

Let us give an example, which is similar to many of our approaches in Section 3.3.2, to illustrate
some of the approaches this allows. The basic idea is that by appropriate choice of prior π0 and
“posterior” π, whenever we have appropriately smooth classes of functions we achieve certain
generalization guarantees.
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Example 4.4 (A uniform law for Lipschitz functions): Consider a case as in Section 3.3.2,
where we let L(θ) = P`(θ, Z) for some function ` : Θ×Z → R. Let Bd2 = {v ∈ Rd | ‖v‖2 ≤ 1}
be the `2-ball in Rd, and let us assume that Θ ⊂ rBd2 and additionally that θ 7→ `(θ, z) is
L-Lipschitz for all z ∈ Z. For simplicity, we assume that `(θ, z) ∈ [0, Lr] for all θ ∈ Θ (though
it is possible to avoid this by relativizing our bounds by replacing ` by `(·, z)− infθ∈Θ `(θ, z)).
If L̂n(θ) = Pn`(θ, Z), then Theorem 4.3 implies that

∫
|L̂n(θ)− L(θ)|dπ(θ) ≤

√
2L2r2

3n

[
Dkl (π||π0) + log

2

δ

]
for all π with probability at least 1 − δ. Now, let θ0 ∈ Θ be arbitrary, and for ε > 0 (to be
chosen later) take π0 to be uniform on (r + ε)Bd2 and π to be uniform on θ0 + εBd2. Then we

immediately see that Dkl (π||π0) = d log(1+ r
ε ). Moreover, we have

∫
L̂n(θ)dπ(θ) ∈ L̂n(θ0)±Lε

and similarly for L(θ), by the L-Lipschitz continuity of `. For any fixed ε > 0, we thus have

|L̂n(θ0)− L(θ0)|2 ≤ 2Lε+

√
2L2r2

3n

[
d log

(
1 +

r

ε

)
+ log

2

δ

]
simultaneously for all θ0 ∈ Θ, with probability at least 1 − δ. By choosing ε = rd

n we obtain
that with probability at least 1− δ,

sup
θ∈Θ
|L̂n(θ)− L(θ)| ≤ 2Lrd

n
+

√
2L2r2

3n

[
d log

(
1 +

n

d

)
+ log

2

δ

]
.

Thus, roughly, with high probability we have |L̂n(θ)− L(θ)| ≤ O(1)Lr
√

d
n log n

d for all θ. 3

On the one hand, the result in Example 4.4 is satisfying: it applies to any Lipschitz function
and provides a uniform bound. On the other hand, when we compare to the results achievable for
specially structured linear function classes, then applying Rademacher complexity bounds—such
as Proposition 3.45 and Example 3.46—we have somewhat weaker results, in that they depend on
the dimension explicitly, while the Rademacher bounds do not exhibit this explicit dependence.
This means they can potentially apply in infinite dimensional spaces that Example 4.4 cannot. We
will give an example presently showing how to address some of these issues.

4.2.1 Relative bounds

In many cases, it is useful to have bounds that provide somewhat finer control than the bounds we
have presented. Recall from our discussion of sub-Gaussian and sub-exponential random variables,
especially the Bennett and Bernstein-type inequalities (Proposition 3.19), that if a random variable
X satisfies |X| ≤ b but Var(X) ≤ σ2 � b2, then X concentrates more quickly about its mean than
the convergence provided by naive application of sub-Gaussian concentration with sub-Gaussian
parameter b2/8. To that end, we investigate an alternative to Theorem 4.3 that allows somewhat
sharper control.

The approach is similar to our derivation in Theorem 4.3, where we show that the moment
generating function of a quantity like Pnf −Pf is small (Eq. (4.2.1)) and then relate this—via the
Donsker-Varadhan change of measure in Theorem 4.1—to the quantities we wish to control.
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Proposition 4.5. Let F be a collection of functions f : X → R, where σ2(f) := Var(f(X)).
Assume that each f ∈ F satisfies the Bernstein condition (3.1.9) with parameter b, that is,
|E[(f(X) − Pf)k]| ≤ k!

2 σ
2(f)bk−2 for k = 3, 4, . . .. Then for any |λ| ≤ 1

2b , with probability at
least 1− δ,

λ

∫
Pfdπ(f)− λ2

∫
σ2(f)dπ(f) ≤ λ

∫
Pnfdπ(f) +

1

n

[
Dkl (π||π0) + log

1

δ

]
simultaneously for all π ∈ Π.

Proof We begin with an inequality on the moment generating function of random variables
satisfying the Bernstein condition (3.1.9), that is, that |E[(X − µ)k]| ≤ k!

2 σ
2bk−2 for k ≥ 2. In this

case, Lemma 3.18 implies that
E[eλ(X−µ)] ≤ exp(λ2σ2)

for |λ| ≤ 1/(2b). As a consequence, for any f in our collection F , we see that if we define

∆n(f, λ) := λ
[
Pnf − Pf − λσ2(f)

]
,

we have that
E[exp(n∆n(f, λ))] = E[exp(λ(f(X)− Pf)− λ2σ2(f))]n ≤ 1

for all n, f ∈ F , and |λ| ≤ 1
2b . Then, for any fixed measure π0 on F , Markov’s inequality implies

that

P
(∫

exp(n∆n(f, λ))dπ0(f) ≥ 1

δ

)
≤ δ. (4.2.3)

Now, as in the proof of Theorem 4.3, we use the Donsker-Varadhan Theorem 4.1 (change of mea-
sure), which implies that

n

∫
∆n(f, λ)dπ0(f) ≤ Dkl (π||π0) + log

∫
exp(n∆n(f, λ))dπ0(f)

for all distributions π. Using inequality (4.2.3), we obtain that with probability at least 1− δ,∫
∆n(f, λ)dπ0(f) ≤ 1

n

[
Dkl (π||π0) + log

1

δ

]
for all π. As this holds for any fixed |λ| ≤ 1/(2b), this gives the desired result by rearranging.

We would like to optimize over the bound in Proposition 4.5 by choosing the “best” λ. If we
could choose the optimal λ, by rearranging Proposition 4.5 we would obtain the bound

Eπ[Pf ] ≤ Eπ[Pnf ] + inf
λ>0

{
λEπ[σ2(f)] +

1

nλ

[
Dkl (π||π0) + log

1

δ

]}
= Eπ[Pnf ] + 2

√
Eπ[σ2(f)]

n

[
Dkl (π||π0) + log

1

δ

]
simultaneously for all π, with probability at least 1−δ. The problem with this approach is two-fold:
first, we cannot arbitrarily choose λ in Proposition 4.5, and second, the bound above depends on
the unknown population variance σ2(f). It is thus of interest to understand situations in which
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we can obtain similar guarantees, but where we can replace unknown population quantities on the
right side of the bound with known quantities.

To that end, let us consider the following condition, a type of relative error condition related
to the Bernstein condition (3.1.9): for each f ∈ F ,

σ2(f) ≤ bPf. (4.2.4)

This condition is most natural when each of the functions f take nonnegative values—for example,
when f(X) = `(θ,X) for some loss function ` and parameter θ of a model. If the functions f are
nonnegative and upper bounded by b, then we certainly have σ2(f) ≤ E[f(X)2] ≤ bE[f(X)] = bPf ,
so that Condition (4.2.4) holds. Revisiting Proposition 4.5, we rearrange to obtain the following
theorem.

Theorem 4.6. Let the conditions of Proposition 4.5 hold, and in addition, assume the variance-
bounding condition (4.2.4). Then for any 0 ≤ λ ≤ 1

2b , with probability at least 1− δ,

Eπ[Pf ] ≤ Eπ[Pnf ] +
λb

1− λb
Eπ[Pnf ] +

1

λ(1− λb)
1

n

[
Dkl (π||π0) + log

1

δ

]
for all π.

Proof We use condition (4.2.4) to see that

λEπ[Pf ]− λ2bEπ[Pf ] ≤ λEπ[Pf ]− λ2Eπ[σ2(f)],

apply Proposition 4.5, and divide both sides of the resulting inequality by λ(1− λb).

To make this uniform in λ, thus achieving a tighter bound (so that we need not pre-select λ),
we choose multiple values of λ and apply a union bound. To that end, let 1+η = 1

1−λb , or η = λb
1−λb

and 1
λb(1−λb) = (1+η)2

η , so that the inequality in Theorem 4.3 is equivalent to

Eπ[Pf ] ≤ Eπ[Pnf ] + ηEπ[Pnf ] +
(1 + η)2

η

b

n

[
Dkl (π||π0) + log

1

δ

]
.

Using that our choice of η ∈ [0, 1], this implies

Eπ[Pf ] ≤ Eπ[Pnf ] + ηEπ[Pnf ] +
1

η

b

n

[
Dkl (π||π0) + log

1

δ

]
+

3b

n

[
Dkl (π||π0) + log

1

δ

]
.

Now, take η0 = 0, η1 = 1/n, . . . , ηn = 1. Then by optimizing over η ∈ {η0, . . . , ηn} (which is
equivalent, to within a 1/n factor, to optimizing over 0 < η ≤ 1) and applying a union bound, we
obtain

Corollary 4.7. Let the conditions of Theorem 4.6 hold. Then with probability at least 1 − δ, for
all π such that bEπ [Pnf ]

n (Dkl (π||π0) + log n
δ ) ≤ 1,

Eπ[Pf ] ≤ Eπ[Pnf ] + 2

√
bEπ[Pnf ]

n

[
Dkl (π||π0) + log

n

δ

]
+

1

n

(
Eπ[Pnf ] + Cb

[
Dkl (π||π0) + log

n

δ

])
,

where C is a numerical constant.
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Let us revisit the loss minimization approaches central to Section 3.3.2 and Example 4.4 in the
context of Corollary 4.7. We will investigate an approach to achieve convergence guarantees that
are (nearly) independent of dimension, focusing on 0-1 losses in a binary classification problem.

Example 4.8 (Large margins and PAC-Bayes): Consider a binary classification problem
with data (x, y) ∈ Rd × {±1}, where we make predictions 〈θ, x〉 (or its sign), and for a margin
penalty γ ≥ 0 we define the loss

`γ(θ; (x, y)) = 1 {〈θ, x〉y ≤ γ} .

We call the quantity 〈θ, x〉y the margin of θ on the pair (x, y), noting that when the margin is
large, 〈θ, x〉 has the same sign as y and is “confident” (i.e. far from zero). For shorthand, let
us define the expected and empirical losses at margin γ by

Lγ(θ) := P`γ(θ; (X,Y )) and L̂γ(θ) := Pn`γ(θ; (X,Y )).

Now, consider the following scenario: let π0 be N(0, τ2I) for some τ > 0 to be chosen, and
let π be N(θ̂, τ2I) for some θ̂ ∈ Rd satisfying ‖θ̂‖2 ≤ r. Then Corollary 4.7 implies that

Eπ[Lγ(θ)] ≤ Eπ[L̂γ(θ)] + 2

√
Eπ[L̂γ(θ)]

n

[
Dkl (π||π0) + log

n

δ

]
+

1

n

(
Eπ[L̂γ(θ)] + Cb

[
Dkl (π||π0) + log

n

δ

])
≤ Eπ[L̂γ(θ)] + 2

√
Eπ[L̂γ(θ)]

n

[ r2

2τ2
+ log

n

δ

]
+

1

n

(
Eπ[L̂γ(θ)] + Cb

[ r2

2τ2
+ log

n

δ

])
simultaneously for all θ̂ satisfying ‖θ̂‖2 ≤ r with probability at least 1− δ, where we have used
that Dkl

(
N(θ, τ2I)||N(0, τ2I)

)
= ‖θ‖22 /(2τ2).

Now, let us use the margin assumption. Note that if Z ∼ N(0, τ2I), then for any fixed
θ0, x, y we have

`0(θ0; (x, y))− P(ZTx ≥ γ) ≤ E[`γ(θ0 + Z; (x, y))] ≤ `2γ(θ0; (x, y)) + P(ZTx ≥ γ)

where the middle expectation is over Z ∼ N(0, τ2I). Using the τ2 ‖x‖22-sub-Gaussianity of
ZTx, we can obtain immediately that if ‖x‖2 ≤ b, we have

`0(θ0; (x, y))− exp

(
− γ2

2τ2b2

)
≤ E[`γ(θ0 + Z; (x, y))] ≤ `2γ(θ0; (x, y)) + exp

(
− γ2

2τ2b2

)
.

Returning to our earlier bound, we evidently have that if ‖x‖2 ≤ b for all x ∈ X , then with
probability at least 1− δ, simultaneously for all θ ∈ Rd with ‖θ‖2 ≤ r,

L0(θ) ≤ L̂2γ(θ) + 2 exp

(
− γ2

2τ2b2

)
+ 2

√
L̂2γ(θ) + exp(− γ2

2τ2b2
)

n

[ r2

2τ2
+ log

n

δ

]
+

1

n

(
L̂2γ(θ) + exp

(
− γ2

2τ2b2

)
+ Cb

[ r2

2τ2
+ log

n

δ

])
.
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Setting τ2 = γ2

2b2 log(bn)
, we immediately see that for any choice of margin γ > 0, we have with

probability at least 1− δ that

L0(θ) ≤ L̂2γ(θ) +
2b

n
+ 2

√
1

n

[
L̂2γ(θ) +

b

n

][r2b2 log(bn)

2γ2
+ log

n

δ

]
+

1

n

(
L̂2γ(θ) +

b

n
+ Cb

[r2b2 log(bn)

2γ2
+ log

n

δ

])
for all ‖θ‖2 ≤ r. Rewriting (replacing 2γ with γ) and ignoring lower-order terms, we have
(roughly) that there exists a constant C <∞ such that that for any fixed margin γ > 0, with
high probability

sup
θ∈Θ

{
P (〈θ,X〉Y ≤ 0)− Pn(〈θ,X〉Y ≤ γ)− C rb

√
log n

γ
√
n

√
Pn(〈θ,X〉Y ≤ γ)

}
≤ 0. (4.2.5)

Inequality (4.2.5) provides a “dimension-free” guarantee—it depends only on the `2-norms
‖θ‖2 and ‖x‖2—so that it can apply equally in infinite dimensional spaces. The key to the
inequality is that if we can find a “large margin” predictor—for example, one achieved by a
support vector machine or, more broadly, by minimizing a convex loss of the form

minimize
‖θ‖2≤r

1

n

n∑
i=1

φ(〈Xi, θ〉Yi)

for some decreasing convex φ : R → R+, e.g. φ(t) = [1− t]+ or φ(t) = log(1 + e−t)—then we
get strong generalization performance guarantees relative to the empirical margin γ. 3

4.3 Interactive data analysis

A major challenge in modern data analysis is that analyses are often not the classical statistics and
scientific method setting. In the scientific method—forgive me for being a pedant—one proposes
a hypothesis, the status quo or some other belief, and then designs an experiment to falsify that
hypothesis. Then, upon performing the experiment, there are only two options: either the experi-
mental results contradict the hypothesis (that is, we must reject the null) so that the hypothesis is
false, or the hypothesis remains consistent with available data. In the classical (Fisherian) statis-
tics perspective, this typically means that we have a single null hypothesis H0 before observing a
sample, we draw a sample X ∈ X , and then for some test statistic T : X → R with observed value
tobserved = T (X), we compute the probability under the null of observing something as extreme as
what we observed, that is, the p-value p = PH0(T (X) ≥ tobserved).

Yet modern data analyses are distant from this pristine perspective for many reasons. The
simplest is that we often have a number of hypotheses we wish to test, not a single one. For example,
in biological applications, we may wish to investigate the associations between the expression of
number of genes and a particular phenotype or disease; each gene j then corresponds to a null
hypothesis H0,j that gene j is independent of the phenotype. There are numerous approaches to
addressing the challenges associated with such multiple testing problems—such as false discovery
rate control, familywise error rate control, and others—with whole courses devoted to the challenges.

Even these approaches to multiple testing and high-dimensional problems do not truly capture
modern data analyses, however. Indeed, in many fields, researchers use one or a few main datasets,
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writing papers and performing multiple analyses on the same dataset. For example, in medicine, the
UK Biobank dataset [130] has some several hundred citations (as of late 2018), many of which build
on one another, with early studies coloring the analyses in subsequent studies. Even in situations
without a shared dataset, analyses present researchers with huge degrees of freedom and choice.
A researcher may study a summary statistic of his or her sampled data, or a plot of a few simple
relationships, performing some simple data exploration—which statisticians and scientists have
advocated for 50 years, dating back at least to John Tukey!—but this means that there are huge
numbers of potential comparisons a researcher might make (that he or she does not). This “garden
of forking paths,” as Gelman and Loken [73] term it, causes challenges even when researchers are
not “p-hacking” or going on a “fishing expedition” to try to find publishable results. The problem
in these studies and approaches is that, because we make decisions that may, even only in a small
way, depend on the data observed, we have invalidated all classical statistical analyses.

To that end, we now consider interactive data analyses, where we perform data analyses se-
quentially, computing new functions on a fixed sample X1, . . . , Xn after observing some initial
information about the sample. The starting point of our approach is similar to our analysis of
PAC-Bayesian learning and generalization: we observe that if the function we decide to compute
on the data Xn

1 is chosen without much information about the data at hand, then its value on the
sample should be similar to its values on the full population. This insight dovetails with what we
have seen thus far, that appropriate “stability” in information can be useful and guarantee good
future performance.

4.3.1 The interactive setting

We do not consider the interactive data analysis setting in full, rather, we consider a stylized
approach to the problem, as it captures many of the challenges while being broad enough for
different applications. In particular, we focus on the statistical queries setting, where a data
analyst wishes to evaluate expectations

EP [φ(X)] (4.3.1)

of various functionals φ : X → R under the population P using a sample Xn
1

iid∼ P . Certainly,
numerous problems problems are solvable using statistical queries (4.3.1). Means use φ(x) = x,
while we can compute variances using the two statistical queries φ1(x) = x and φ2(x) = x2, as
Var(X) = EP [φ2(X)]− EP [φ1(X)]2.

Classical algorithms for the statistical query problem simply return sample means Pnφ :=
1
n

∑n
i=1 φ(Xi) given a query φ : X → R. When the number of queries to be answered is not chosen

adaptively, this means we can typically answer a large number relatively accurately; indeed, if we
have a finite collection Φ of σ2-sub-Gaussian φ : X → R, then we of course have

P

(
max
φ∈Φ
|Pnφ− Pφ| ≥

√
2σ2

n
(log(2|Φ|) + t)

)
≤ e−t2 for t ≥ 0

by Corollary 3.9 (sub-Gaussian concentration) and a union bound. Thus, so long as |Φ| is not
exponential in the sample size n, we expect uniformly high accuracy.

Example 4.9 (Risk minimization via statistical queries): Suppose that we are in the loss-
minimization setting (3.3.3), where the losses `(θ,Xi) are convex and differentiable in θ. Then
gradient descent applied to L̂n(θ) = Pn`(θ,X) will converge to a minimizing value of L̂n. We
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can evidently implement gradient descent by a sequence of statistical queries φ(x) = ∇θ`(θ, x),
iterating

θ(k+1) = θ(k) − αkPnφ(k), (4.3.2)

where φ(k) = ∇θ`(θ(k), x) and αk is a stepsize. 3

One issue with the example (4.9) is that we are interacting with the dataset, because each
sequential query φ(k) depends on the previous k − 1 queries. (Our results on uniform convergence
of empirical functionals and related ideas address many of these challenges, so that the result of
the process (4.3.2) will be well-behaved regardless of the interactivity.)

We consider an interactive version of the statistical query estimation problem. In this version,
there are two parties: an analyst (or statistician or learner), who issues queries φ : X → R, and
a mechanism that answers the queries to the analyst. We index our functionals φ by t ∈ T for a
(possibly infinite) set T , so we have a collection {φt}t∈T . In this context, we thus have the following
scheme:

Input: Sample Xn
1 drawn i.i.d. P , collection {φt}t∈T of possible queries

Repeat: for k = 1, 2, . . .

i. Analyst chooses index Tk ∈ T and query φ := φTk

ii. Mechanism responds with answer Ak approximating Pφ = EP [φ(X)] using Xn
1

Figure 4.1: The interactive statistical query setting

Of interest in the iteration 4.1 is that we interactively choose T1, T2, . . . , Tk, where the choice Ti
may depend on our approximations of EP [φTj (X)] for j < i, that is, on the results of our previous
queries. Even more broadly, the analyst may be able to choose the index Tk in alternative ways
depending on the sample Xn

1 , and our goal is to still be able to accurately compute expectations
PφT = EP [φT (X)] when the index T may depend on Xn

1 . The setting in Figure 4.1 clearly breaks
with the classical statistical setting in which an analysis is pre-specified before collecting data, but
more closely captures modern data exploration practices.

4.3.2 Second moment errors and mutual information

The starting point of our derivation is the following result, which follows from more or less identical
arguments to those for our PAC-Bayesian bounds earlier.

Theorem 4.10. Let {φt}t∈T be a collection of σ2-sub-Gaussian functions φt : X → R. Then for
any random variable T and any λ > 0,

E[(PnφT − PφT )2] ≤ 1

λ

[
I(Xn

1 ;T )− 1

2
log
[
1− 2λσ2/n

]
+

]
and

|E[PnφT ]− E[PφT ]| ≤
√

2σ2

n
I(Xn

1 ;T )

where the expectations are taken over T and the sample Xn
1 .
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Proof The proof is similar to that of our first basic PAC-Bayes result in Theorem 4.3. Let us
assume w.l.o.g. that Pφt = 0 for all t ∈ T , noting that then Pnφt is σ2/n-sub-Gaussian. We prove

the first result first. Lemma 4.2 implies that E[exp(λ(Pnφt)
2)] ≤

[
1− 2λσ2/n

]−1/2

+
for each t ∈ T .

As a consequence, we obtain that via the Donsker-Varadhan equality (Theorem 4.1) that

λE
[∫

(Pnφt)
2dπ(t)

]
(i)

≤ E[Dkl (π||π0)] + E
[
log

∫
exp(λ(Pnφt)

2)dπ0(t)

]
(ii)

≤ E[Dkl (π||π0)] + logE
[∫

exp(λ(Pnφt)
2)dπ0(t)

]
(iii)

≤ E[Dkl (π||π0)]− 1

2
log
[
1− 2λσ2/n

]
+

for all distributions π on T , which may depend on Pn, where the expectation E is taken over the

sample Xn
1

iid∼ P . (Here inequality (i) is Theorem 4.1, inequality (ii) is Jensen’s inequality, and
inequality (iii) is Lemma 4.2.) Now, let π0 be the marginal distribution on T (marginally over
all observations Xn

1 ), and let π denote the posterior of T conditional on the sample Xn
1 . Then

E[Dkl (π||π0)] = I(Xn
1 ;T ) by definition of the mutual information, giving the bound on the squared

error.
For the second result, note that the Donsker-Varadhan equality implies

λE
[∫

Pnφtdπ(t)

]
≤ E[Dkl (π||π0)] + log

∫
E[exp(λPnφt)]dπ0(t) ≤ I(Xn

1 ;T ) +
λ2σ2

2n
.

Dividing both sides by λ gives E[PnφT ] ≤
√

2σ2I(Xn
1 ;T )/n, and performing the same analysis with

−φT gives the second result of the theorem.

The key in the theorem is that if the mutual information—the Shannon information—I(X;T )
between the sample X and T is small, then the expected squared error can be small. To make this
a bit clearer, let us choose values for λ in the theorem; taking λ = n

2eσ2 gives the following corollary.

Corollary 4.11. Let the conditions of Theorem 4.10 hold. Then

E[(PnφT − PφT )2] ≤ 2eσ2

n
I(Xn

1 ;T ) +
5σ2

4n
.

Consequently, if we can limit the amount of information any particular query T (i.e., φT ) contains
about the actual sample Xn

1 , then guarantee reasonably high accuracy in the second moment errors
(PnφT − PφT )2.

4.3.3 Limiting interaction in interactive analyses

Let us now return to the interactive data analysis setting of Figure 4.1, where we recall the stylized
application of estimating mean functionals Pφ for φ ∈ {φt}t∈T . To motivate a more careful ap-
proach, we consider a simple example to show the challenges that may arise even with only a single
“round” of interactive data analysis. Naively answering queries accurately—using the mechanism
Pnφ that simply computes the sample average—can easily lead to problems:

79



Stanford Statistics 311/Electrical Engineering 377 John Duchi

Example 4.12 (A stylized correlation analysis): Consider the following stylized genetics
experiment. We observe vectors X ∈ {−1, 1}k, where Xj = 1 if gene j is expressed and −1
otherwise. We also observe phenotypes Y ∈ {−1, 1}, where Y = 1 indicates appearance of the
phenotype. In our setting, we will assume that the vectors X are uniform on {−1, 1}k and
independent of Y , but an experimentalist friend of ours wishes to know if there exists a vector
v with ‖v‖2 = 1 such that the correlation between vTX and Y is high, meaning that vTX
is associated with Y . In our notation here, we have index set {v ∈ Rk | ‖v‖2 = 1}, and by
Example 3.6, Hoeffding’s lemma, and the independence of the coordinates of X we have that
vTXY is ‖v‖22 /4 = 1/4-sub-Gaussian. Now, we recall the fact that if Zj , j = 1, . . . , k, are
σ2-sub-Gaussian, then for any p ≥ 1, we have

E[max
j
|Zj |p] ≤ (Cpσ2 log k)p/2

for a numerical constant C. That is, powers of sub-Gaussian maxima grow at most logarith-
mically. Indeed, by Theorem 3.10, we have for any q ≥ 1 by Hölder’s inequality that

E[max
j
|Zj |p] ≤ E

[∑
j

|Zj |pq
]1/q

≤ k1/q(Cpqσ2)p/2,

and setting q = log k gives the inequality. Thus, we see that for any a priori fixed v1, . . . , vk, vk+1,
we have

E[max
j

(vTj (PnY X))2] ≤ O(1)
log k

n
.

If instead we allow a single interaction, the problem is different. We issue queries associated
with v = e1, . . . , ek, the k standard basis vectors; then we simply set Vk+1 = PnY X/ ‖PnY X‖2.
Then evidently

E[(V T
k+1(PnY X))2] = E[‖PnY X‖22] =

k

n
,

which is exponentially larger than in the non-interactive case. That is, if an analyst is allowed
to interact with the dataset, he or she may be able to discover very large correlations that are
certainly false in the population, which in this case has PXY = 0. 3

Example 4.12 shows that, without being a little careful, substantial issues may arise in interac-
tive data analysis scenarios. When we consider our goal more broadly, which is to be able to provide
accurate approximations to Pφ for queries φ chosen adaptively for any population distribution P
and φ : X → [−1, 1], it is possible to construct quite perverse situations, where if we compute
sample expectations Pnφ exactly, one round of interaction is sufficient to find a query φ for which
Pnφ− Pφ ≥ 1.

Example 4.13 (Exact query answering allows arbitrary corruption): Suppose we draw a

sample Xn
1 of size n on a sample space X = [m] with Xi

iid∼ Uniform([m]), where m ≥ 2n. Let
Φ be the collection of all functions φ : [m]→ [−1, 1], so that P(|Pnφ−Pφ| ≥ t) ≤ exp(−nt2/2)
for any fixed φ. Suppose that in the interactive scheme in Fig. 4.1, we simply release answers
A = Pnφ. Consider the following query:

φ(x) = n−x for x = 1, 2, . . . ,m.
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Then by inspection, we see that

Pnφ =

m∑
j=1

n−j card({Xi | Xi = j})

=
1

n
card({Xi | Xi = 1}) +

1

n2
card({Xi | Xi = 1}) + · · ·+ 1

nm
card({Xi | Xi = m}).

It is clear that given Pnφ, we can reconstruct the sample counts exactly. Then if we define a
second query φ2(x) = 1 for x ∈ Xn

1 and φ2(x) = −1 for x 6∈ Xn
1 , we see that Pφ2 ≤ n

m − 1,
while Pnφ2 = 1. The gap is thus

E[Pnφ2 − Pφ2] ≥ 2− n

m
≥ 1,

which is essentially as bad as possible. 3

More generally, when one performs an interactive data analysis (e.g. as in Fig. 4.1), adapting
hypotheses while interacting with a dataset, it is not a question of statistical significance or mul-
tiplicity control for the analysis one does, but for all the possible analyses one might have done
otherwise. Given the branching paths one might take in an analysis, it is clear that we require
some care.

With that in mind, we consider the desiderata for techniques we might use to control information
in the indices we select. We seek some type of stability in the information algorithms provide to
a data analyst—intuitively, if small changes to a sample do not change the behavior of an analyst
substantially, then we expect to obtain reasonable generalization bounds. More broadly, if outputs
of a particular analysis procedure carry little information about a particular sample (but instead
provide information about a population), then Corollary 4.11 suggests that any estimates we obtain
should be accurate.

To develop this stability theory, we require two conditions: first, that whatever quantity we
develop for stability should compose adaptively, meaning that if we apply two (randomized) algo-
rithms to a sample, then if both are appropriately stable, even if we choose the second algorithm
because of the output of the first in arbitrary ways, they should remain jointly stable. Second, our
notion should bound the mutual information I(Xn

1 ;T ) between the sample Xn
1 and T . Lastly, we

remark that this control on the mutual information has an additional benefit: by the data process-
ing inequality, any downstream analysis we perform that depends only on T necessarily satisfies the
same stability and information guarantees as T , because if we have the Markov chain Xn

1 → T → V
then I(Xn

1 ;V ) ≤ I(Xn
1 ;T ).

We consider randomized algorithms A : X n → A, taking values in our index set A, where
A(Xn

1 ) ∈ A is a random variable that depends on the sample Xn
1 . For simplicity in derivation,

we abuse notation in this section, and for random variables X and Y with distributions P and Q
respectively, we denote

Dkl (X||Y ) := Dkl (P ||Q) .

We make the following definition.

Definition 4.1. Let ε ≥ 0. A randomized algorithm A : X n → A is ε-KL-stable if for each
i ∈ {1, . . . , n} there is a randomized Ai : X n−1 → A such that for every sample xn1 ∈ X n,

1

n

n∑
i=1

Dkl

(
A(xn1 )||Ai(x\i)

)
≤ ε.
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Examples may be useful to understand Definition 4.1.

Example 4.14 (KL-stability in mean estimation: Gaussian noise addition): Suppose we
wish to estimate a mean, and that xi ∈ [−1, 1] are all real-valued. Then a natural statistic
is to simply compute A(xn1 ) = 1

n

∑n
i=1 xi. In this case, without randomization, we will have

infinite KL-divergence between A(xn1 ) and Ai(x\i). If instead we set A(xn1 ) = 1
n

∑n
i=1 xi + Z

for Z ∼ N(0, σ2), and similarly Ai = 1
n

∑
j 6=i xj + Z, then we have (recall Example 2.7)

1

n

n∑
i=1

Dkl

(
A(xn1 )||A(x\i)

)
=

1

2nσ2

n∑
i=1

1

n2
x2
i ≤

1

2σ2n2
,

so that a the sample mean of a bounded random variable perturbed with Guassian noise is
ε = 1

2σ2n2 -KL-stable. 3

We can consider other types of noise addition as well.

Example 4.15 (KL-stability in mean estimation: Laplace noise addition): Let the conditions
of Example 2.7 hold, but suppose instead of Gaussian noise we add scaled Laplace noise, that
is, A(xn1 ) = 1

n

∑n
i=1 xi + Z for Z with density p(z) = 1

2σ exp(−|z|/σ), where σ > 0. Then
using that if Lµ,σ denotes the Laplace distribution with shape σ and mean µ, with density
p(z) = 1

2σ exp(−|z − µ|/σ), we have

Dkl (Lµ0,σ||Lµ1,σ) =
1

σ2

∫ |µ1−µ0|
0

exp(−z/σ)(|µ1 − µ0| − z)dz

= exp

(
−|µ1 − µ0|

σ

)
− 1 +

|µ1 − µ0|
σ

≤ |µ1 − µ0|2

2σ2
,

we see that in this case the sample mean of a bounded random variable perturbed with Laplace
noise is ε = 1

2σ2n2 -KL-stable, where σ is the shape parameter. 3

The two key facts are that KL-stable algorithms compose adaptively and that they bound
mutual information in independent samples.

Lemma 4.16. Let A : X n → A0 and A′ : A0 × X → A1 be ε and ε′-KL-stable algorithms,
respectively. Then the (randomized) composition A′ ◦ A(xn1 ) = A′(A(xn1 ), xn1 ) is ε + ε′-KL-stable.
Moreover, the pair (A′ ◦A(xn1 ), A(xn1 )) is ε+ ε′-KL-stable.

Proof Let Ai and A′i be the promised sub-algorithms in Definition 4.1. We apply the data
processing inequality, which implies for each i that

Dkl

(
A′(A(xn1 ), xn1 )||A′i(Ai(x\i), x\i)

)
≤ Dkl

(
A′(A(xn1 ), xn1 ), A(xn1 )||A′i(Ai(x\i), x\i), Ai(x\i)

)
.

We require a bit of notational trickery now. Fixing i, let PA,A′ be the joint distribution of
A′(A(xn1 ), xn1 ) and A(xn1 ) and QA,A′ the joint distribution of A′i(Ai(x\i), x\i) and Ai(x\i), so that
they are both distributions over A1 × A0. Let PA′|a be the distribution of A′(t, xn1 ) and similarly
QA′|a is the distribution of A′i(t, x\i). Note that A′, A′i both “observe” x, so that using the chain
rule (2.1.6) for KL-divergences, we have

Dkl

(
A′ ◦A,A||A′i ◦Ai, Ai

)
= Dkl

(
PA,A′ ||QA,A′

)
= Dkl (PA||QA) +

∫
Dkl

(
PA′|t||QA′|t

)
dPA(t)

= Dkl (A||Ai) + EA[Dkl

(
A′(A, xn1 )||A′i(A, xn1 )

)
].
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Summing this from i = 1 to n yields

1

n

n∑
i=1

Dkl

(
A′ ◦A||A′i ◦Ai

)
≤ 1

n

n∑
i=1

Dkl (A||Ai) + EA
[

1

n

n∑
i=1

Dkl

(
A′(A, xn1 )||A′i(A, xn1 )

) ]
≤ ε+ ε′,

as desired.

The second key result is that KL-stable algorithms also bound the mutual information of a
random function.

Lemma 4.17. Let Xi be independent. Then for any random variable A,

I(A;Xn
1 ) ≤

n∑
i=1

I(A;Xi | X\i) =
n∑
i=1

∫
Dkl

(
A(xn1 )||Ai(x\i)

)
dP (xn1 ),

where Ai(x\i) = A(xi−1
1 , Xi, x

n
i+1) is the random realization of A conditional on X\i = x\i.

Proof Without loss of generality, we assume A and X are both discrete. In this case, we have

I(A;Xn
1 ) =

n∑
i=1

I(A;Xi | Xi−1
1 ) =

n∑
i=1

H(Xi | Xi−1
1 )−H(Xi | A,Xi−1

1 ).

Now, because the Xi follow a product distribution, H(Xi | Xi−1
1 ) = H(Xi), while H(Xi |

A,Xi−1
1 ) ≥ H(Xi | A,X\i) because conditioning reduces entropy. Consequently, we have

I(A;Xn
1 ) ≤

n∑
i=1

H(Xi)−H(Xi | A,X\i) =
n∑
i=1

I(A;Xi | X\i).

To see the final equality, note that

I(A;Xi | X\i) =

∫
Xn−1

I(A;Xi | X\i = x\i)dP (x\i)

=

∫
Xn−1

∫
X
Dkl (A(xn1 )||A(x1:i−1, Xi, xi+1:n)) dP (xi)dP (x\i)

by definition of mutual information as I(X;Y ) = EX [Dkl

(
PY |X ||PY

)
].

Combining Lemmas 4.16 and 4.17, we see immediately that KL stability implies a mutual
information bound, and consequently even interactive KL-stable algorithms maintain bounds on
mutual information.

Proposition 4.18. Let A1, . . . , Ak be εi-KL-stable procedures, respectively, composed in any arbi-
trary sequence. Let Xi be independent. Then

1

n
I(A1, . . . , Ak;X

n
1 ) ≤

k∑
i=1

εi.

Proof The only thing to notice is that in the bound of Lemma 4.17, for each i we have∫
Dkl

(
A(xn1 )||Ai(x\i)

)
dP (xn1 ) ≤

∫
Dkl

(
A(xn1 )||A(x\i)

)
dP (xn1 ) for any (randomized) function A,

as the marginal Ai in the lemma minimizes the average KL-divergence. (Recall Exercise 2.15.)
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4.3.4 Error bounds for a simple noise addition scheme

Based on Proposition 4.18, to build an appropriately well-generalizing procedure we must build a
mechanism for the interaction in Fig. 4.1 that maintains KL-stability. Using Example 4.14, this
is not challenging for the class of bounded queries. Let Φ = {φt}t∈T where φt : X → [−1, 1] be
the collection of statistical queries taking values in [−1, 1]. Then based on Proposition 4.18 and
Example 4.14, the following procedure is stable.

Input: Sample Xn
1 ∈ X n drawn i.i.d. P , collection {φt}t∈T of possible queries φt : X →

[−1, 1]
Repeat: for k = 1, 2, . . .

i. Analyst chooses index Tk ∈ T and query φ := φTk

ii. Mechanism draws independent Zk ∼ N(0, σ2) and responds with answer

Ak := Pnφ+ Zk =
1

n

n∑
i=1

φ(Xi) + Zk.

Figure 4.2: Sequential Gaussian noise mechanism.

This procedure is evidently KL-stable, and based on Example 4.14 and Proposition 4.18, we
have that

1

n
I(Xn

1 ;T1, . . . , Tk, Tk+1) ≤ k

2σ2n2

so long as the indices Ti ∈ T are chosen only as functions of Pnφ + Zj for j < i, as the classical
information processing inequality implies that

1

n
I(Xn

1 ;T1, . . . , Tk, Tk+1) ≤ 1

n
I(Xn

1 ;A1, . . . , Ak)

because we have Xn
1 → A1 → T2 and so on for the remaining indices. With this, we obtain the

following theorem.

Theorem 4.19. Let the indices Ti, i = 1, . . . , k + 1 be chosen in an arbitrary way using the
procedure 4.2, and let σ2 > 0. Then

E
[
max
j≤k

(Aj − PφTj )2

]
≤ 2ek

σ2n2
+

10

4n
+ 4σ2(log k + 1).

By inspection, we can optimize over σ2 by setting σ2 =
√
k/(log k + 1)/n, which yields the

upper bound

E
[
max
j≤k

(Aj − PφTj )2

]
≤ 10

4n
+ 10

√
k(1 + log k)

n
.

Comparing to Example 4.12, we see a substantial improvement. While we do not achieve accuracy
scaling with log k, as we would if the queried functionals φt were completely independent of the
sample, we see that we achieve mean-squared error of order

√
k log k

n
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for k adaptively chosen queries.
Proof To prove the result, we use a technique sometimes called the monitor technique. Roughly,
the idea is that we can choose the index Tk+1 in any way we desire as long as it is a function of the
answers A1, . . . , Ak and any other constants independent of the data. Thus, we may choose

Tk+1 := Tk? where k? = argmax
j≤k

{|Aj − PφTj |},

as this is a (downstream) function of the k different ε = 1
2σ2n2 -KL-stable queries T1, . . . , Tk. As

a consequence, we have from Corollary 4.11 (and the fact that the queries φ are 1-sub-Gaussian)
that for T = Tk+1,

E[(PnφT − PφT )2] ≤ 2e

n
I(Xn

1 ;Tk+1) +
5

4n
≤ 2ekε+

5

4n
=

ek

σ2n2
+

5

4n
.

Now, we simply consider the independent noise addition, noting that (a+ b)2 ≤ 2a2 + 2b2 for any
a, b ∈ R, so that

E
[
max
j≤k

(Aj − PφTj )2

]
≤ 2E[(PnφT − PφT )2] + 2E

[
max
j≤k
{Z2

j }
]

≤ 2ek

σ2n2
+

10

4n
+ 4σ2(log k + 1), (4.3.3)

where inequality (4.3.3) is the desired result and follows by the following lemma.

Lemma 4.20. Let Wj, j = 1, . . . , k be independent N(0, 1). Then E[maxjW
2
j ] ≤ 2(log k + 1).

Proof We assume that k ≥ 3, as the result is trivial otherwise. Using the standard tail bound for
Gaussians (tighter than the standard sub-Gaussian bound) that P(W ≥ t) ≤ 1√

2πt
e−t

2/2 for t ≥ 0

and that E[Z] =
∫∞

0 P(Z ≥ t)dt for a nonnegative random variable Z, we obtain that for any t0,

E[max
j
W 2
j ] =

∫ ∞
0

P(max
j
W 2
j ≥ t)dt ≤ t0 +

∫ ∞
t0

P(max
j
W 2
j ≥ t)dt

≤ t0 + 2k

∫ ∞
t0

P(W1 ≥
√
t)dt ≤ t0 +

2k√
2π

∫ ∞
t0

e−t/2dt = t0 +
4k√
2π
e−t0/2.

Setting t0 = 2 log(4k/
√

2π) gives E[maxjW
2
j ] ≤ 2 log k + log 4√

2π
+ 1.

4.4 Bibliography

For PAC-Bayes: the original papers are David McAllester’s [108, 109, 110], and the tutorial [111].
Our approach is also similar to Catoni’s [38]. Our proofs are a simplified version of McCallester’s
PAC-Bayesian Stochastic Model Selection.

Interactive data analysis: [67, 65, 66] and [21, 22].
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4.5 Exercises

Question 4.1 (Large-margin PAC-Bayes bounds for multiclass problems): Consider the following
multiclass prediction scenario. Data comes in pairs (x, y) ∈ bBd2 × [k] where Bd2 = {v ∈ Rd | ‖v‖2 ≤
1} denotes the `2-ball and [k] = {1, . . . , k}. We make predictions using predictors θ1, . . . , θk ∈ Rd,
where the prediction of y on an example x is

ŷ(x) := argmax
i≤k

〈θi, x〉.

We suffer an error whenever ŷ(x) 6= y, and the margin of our classifier on pair (x, y) is

〈θy, x〉 −max
i 6=y
〈θi, x〉 = min

i 6=y
〈θy − θi, x〉.

If 〈θy, x〉 > 〈θi, x〉 for all i 6= y, the margin is then positive (and the prediction is correct).

(a) Develop an analogue of the bounds in Example 4.8 in this k-class multiclass setting. To do
so, you should (i) define the analogue of the margin-based loss `γ , (ii) show how Gaussian
perturbations leave it similar, and (iii) prove an analogue of the bound in Example 4.8. You
should assume one of the two conditions

(C1) ‖θi‖2 ≤ r for all i (C2)
k∑
i=1

‖θi‖22 ≤ kr
2

on your classification vectors θi. Specify which condition you choose.

(b) Describe a minimization procedure—just a few lines suffice—that uses convex optimization to
find a (reasonably) large-margin multiclass classifier.

Question 4.2 (A variance-based information bound): Let Φ = {φt}t∈T be a collection of functions
φt : X → R, where each φt satisfies the Bernstein condition (3.1.9) with parameters σ2(φt) and b,
that is, |E[(φt(X)− Pφt(X))k]| ≤ k!

2 σ
2(φt)b

k−2 for all k ≥ 3 and Var(φt(X)) = σ2(φt). Let T ∈ T
be any random variable, which may depend on an observed sample Xn

1 . Show that for all C > 0
and |λ| ≤ C

2b , then ∣∣∣∣E [ PnφT − PφT
max{C, σ(φT )}

]∣∣∣∣ ≤ 1

n|λ|
I(T ;Xn

1 ) + |λ|.

Question 4.3 (An information bound on variance): Let Φ = {φt}t∈T be a collection of functions
φt : X → R, where each φt : X → [−1, 1]. Let σ2(φt) = Var(φt(X)). Let s2

n(φ) = Pnφ
2 − (Pnφ)2 be

the sample variance of φ. Show that for all C > 0 and 0 ≤ λ ≤ C/4, then

E
[

s2
n(φT )

max{C, σ2(φT )}

]
≤ 1

nλ
I(T ;Xn

1 ) + 2.

The max{C, σ2(φT )} term is there to help avoid division by 0. Hint: If 0 ≤ x ≤ 1, then ex ≤ 1+2x,
and if X ∈ [0, 1], then E[eX ] ≤ 1 + 2E[X] ≤ e2E[X].

Question 4.4: Consider the following scenario: let φ : X → [−1, 1] and let α > 0, τ > 0. Let
µ = Pnφ and s2 = Pnφ

2 − µ2. Define σ2 = max{αs2, τ2}, and assume that τ2 ≥ 5α
n .
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(a) Show that the mechanism with answer Ak defined by

A := Pnφ+ Z for Z ∼ N(0, σ2)

is ε-KL-stable (Definition 4.1), where for a numerical constant C <∞,

ε ≤ C · s2

n2σ2
·
(

1 +
α2

σ2

)
.

(b) Show that if α2 ≤ C ′τ2 for a numerical constant C ′ <∞, then we can take ε ≤ O(1) 1
n2α

.

Hint: Use exercise 2.14, and consider the “alternative” mechanisms of sampling from

N(µ−i, σ
2
−i) where σ2

−i = max{αs2
−i, τ

2}

for

µ−i =
1

n− 1

∑
j 6=i

φ(Xj) and s2
−i =

1

n− 1

∑
j 6=i

φ(Xj)
2 − µ2

−i.

Input: Sample Xn
1 ∈ X n drawn i.i.d. P , collection {φt}t∈T of possible queries φt : X →

[−1, 1], parameters α > 0 and τ > 0
Repeat: for k = 1, 2, . . .

i. Analyst chooses index Tk ∈ T and query φ := φTk

ii. Set s2
k := Pnφ

2 − (Pnφ)2 and σ2
k := max{αs2

k, τ
2}

iii. Mechanism draws independent Zk ∼ N(0, σ2
k) and responds with answer

Ak := Pnφ+ Zk =
1

n

n∑
i=1

φ(Xi) + Zk.

Figure 4.3: Sequential Gaussian noise mechanism with variance sensitivity.

Question 4.5 (A general variance-dependent bound on interactive queries): Consider the algo-
rithm in Fig. 4.3. Let σ2(φt) = Var(φt(X)) be the variance of φt.

(a) Show that for b > 0 and for all 0 ≤ λ ≤ b
2 ,

E
[
max
j≤k

|Aj − PφTj |
max{b, σ(φTj )}

]
≤ 1

nλ
I(Xn

1 ;T k1 ) + λ+
√

2 log(ke)

√
4α

nb
I(Xn

1 ;T k1 ) + 2α+
τ2

b2
.

(If you do not have quite the right constants, that’s fine.)

(b) Using the result of Question 4.4, show that with appropriate choices for the parameters
α, b, τ2, λ that for a numerical constant C <∞

E

[
max
j≤k

|Aj − PφTj |
max{(k log k)1/4/

√
n, σ(φTj )}

]
≤ C (k log k)1/4

√
n

.

You may assume that k, n are large if necessary.

(c) Interpret the result from part (b). How does this improve over Theorem 4.19?
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Chapter 5

Advanced techniques in concentration
inequalities

5.1 Entropy and concentration inequalities

In the previous sections, we saw how moment generating functions and related techniques could
be used to give bounds on the probability of deviation for fairly simple quantities, such as sums of
random variables. In many situations, however, it is desirable to give guarantees for more complex
functions. As one example, suppose that we draw a matrix X ∈ Rm×n, where the entries of X are
bounded independent random variables. The operator norm of X, |||X||| := supu,v{u>Xv : ‖u‖2 =
‖v‖2 = 1}, is one measure of the size of X. We would like to give upper bounds on the probability
that |||X||| ≥ E[|||X|||] + t for t ≥ 0, which the tools of the preceding sections do not address well
because of the complicated dependencies on |||X|||.

In this section, we will develop techniques to give control over such complex functions. In
particular, throughout we let Z = f(X1, . . . , Xn) be some function of a sample of independent
random variables Xi; we would like to know if Z is concentrated around its mean. We will use
deep connections between information theoretic quantities and deviation probabilities to investigate
these connections.

First, we give a definition.

Definition 5.1. Let φ : R→ R be a convex function. The φ-entropy of a random variable X is

Hφ(X) := E[φ(X)]− φ(E[X]), (5.1.1)

assuming the relevant expectations exist.

A first example of the φ-entropy is the variance:

Example 5.1 (Variance as φ-entropy): Let φ(t) = t2. Then Hφ(X) = E[X2] − E[X]2 =
Var(X). 3

This example is suggestive of the fact that φ-entropies may help us to control deviations of random
variables from their means. More generally, we have by Jensen’s inequality that Hφ(X) ≥ 0 for
any convex φ; moreover, if φ is strictly convex and X is non-constant, then Hφ(X) > 0. The
rough intuition we consider throughout this section is as follows: if a random variable X is tightly
concentrated around its mean, then we should have X ≈ E[X] “most” of the time, and so Hφ(X)
should be small. The goal of this section is to make this claim rigorous.
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5.1.1 The Herbst argument

Perhaps unsurprisingly given the focus of these lecture notes, we focus on a specific φ, using
φ(t) = t log t, which gives the entropy on which we focus:

H(Z) := E[Z logZ]− E[Z] logE[Z], (5.1.2)

defined whenever Z ≥ 0 with probability 1. As our particular focus throughout this chapter, we
consider the moment generating function and associated transformation X 7→ eλX . If we know the
moment generating function ϕX(λ) := E[eλX ], then ϕ′X(λ) = E[XeλX ], and so

H(eλX) = λϕ′X(λ)− ϕX(λ) logϕX(λ).

This suggests—in a somewhat roundabout way we make precise—that control of the entropy H(eλX)
should be sufficient for controlling the moment generating function of X.

The Herbst argument makes this rigorous.

Proposition 5.2. Let X be a random variable and assume that there exists a constant σ2 < ∞
such that

H(eλX) ≤ λ2σ2

2
ϕX(λ). (5.1.3)

for all λ ∈ R (respectively, λ ∈ R+) where ϕX(λ) = E[eλX ] denotes the moment generating function
of X. Then

E[exp(λ(X − E[X]))] ≤ exp

(
λ2σ2

2

)
for all λ ∈ R (respectively, λ ∈ R+).

Proof Let ϕ = ϕX for shorthand. The proof procedes by an integration argument, where we
show that logϕ(λ) ≤ λ2σ2

2 . First, note that

ϕ′(λ) = E[XeλX ],

so that inequality (5.1.3) is equivalent to

λϕ′(λ)− ϕ(λ) logϕ(λ) = H(eλX) ≤ λ2σ2

2
ϕ(λ),

and dividing both sides by λ2ϕ(λ) yields the equivalent statement

ϕ′(λ)

λϕ(λ)
− 1

λ2
logϕ(λ) ≤ σ2

2
.

But by inspection, we have

∂

∂λ

1

λ
logϕ(λ) =

ϕ′(λ)

λϕ(λ)
− 1

λ2
logϕ(λ).

Moreover, we have that

lim
λ→0

logϕ(λ)

λ
= lim

λ→0

logϕ(λ)− logϕ(0)

λ
=
ϕ′(0)

ϕ(0)
= E[X].
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Integrating from 0 to any λ0, we thus obtain

1

λ0
logϕ(λ0)− E[X] =

∫ λ0

0

[
∂

∂λ

1

λ
logϕ(λ)

]
dλ ≤

∫ λ0

0

σ2

2
dλ =

σ2λ0

2
.

Multiplying each side by λ0 gives

logE[eλ0(X−E[X])] = logE[eλ0X ]− λ0E[X] ≤ σ2λ2
0

2
,

as desired.

It is possible to give a similar argument for sub-exponential random variables, which allows us
to derive Bernstein-type bounds, of the form of Corollary 3.17, but using the entropy method. In
particular, in the exercises, we show the following result.

Proposition 5.3. Assume that there exist positive constants b and σ such that

H(eλX) ≤ λ2
[
bϕ′X(λ) + ϕX(λ)(σ2 − bE[X])

]
(5.1.4a)

for all λ ∈ [0, 1/b). Then X satisfies the sub-exponential bound

logE[eλ(X−E[X])] ≤ σ2λ2

[1− bλ]+
(5.1.4b)

for all λ ≥ 0.

An immediate consequence of this proposition is that any random variable satisfying the entropy
bound (5.1.4a) is (2σ2, 2b)-sub-exponential. As another immediate consequence, we obtain the
concentration guarantee

P(X ≥ E[X] + t) ≤ exp

(
−1

4
min

{
t2

σ2
,
t

b

})
as in Proposition 3.15.

5.1.2 Tensorizing the entropy

A benefit of the moment generating function approach we took in the prequel is the excellent
behavior of the moment generating function for sums. In particular, the fact that ϕX1+···+Xn(λ) =∏n
i=1 ϕXi(λ) allowed us to derive sharper concentration inequalities, and we were only required to

work with marginal distributions of the Xi, computing only the moment generating functions of
individual random variables rather than characteristics of the entire sum. One advantage of the
entropy-based tools we develop is that they allow similar tensorization—based on the chain rule
identities of Chapter 2 for entropy, mutual information, and KL-divergence—for substantially more
complex functions. Our approach here mirrors that of Boucheron, Lugosi, and Massart [30].

With that in mind, we now present a series of inequalities that will allow us to take this approach.
For shorthand throughout this section, we let

X\i = (X1, . . . , Xi−1, Xi+1, . . . , Xn)

be the collection of all variables except Xi. Our first result is a consequence of the chain rule for
entropy and is known as Han’s inequality.
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Proposition 5.4 (Han’s inequality). Let X1, . . . , Xn be discrete random variables. Then

H(Xn
1 ) ≤ 1

n− 1

n∑
i=1

H(X\i).

Proof The proof is a consequence of the chain rule for entropy and that conditioning reduces
entropy. We have

H(Xn
1 ) = H(Xi | X\i) +H(X\i) ≤ H(Xi | Xi−1

1 ) +H(X\i).

Writing this inequality for each i = 1, . . . , n, we obtain

nH(Xn
1 ) ≤

n∑
i=1

H(X\i) +
n∑
i=1

H(Xi | Xi−1
1 ) =

n∑
i=1

H(X\i) +H(Xn
1 ),

and subtracting H(Xn
1 ) from both sides gives the result.

We also require a divergence version of Han’s inequality, which will allow us to relate the entropy
H of a random variable to divergences and other information-theoretic quantities. Let X be an
arbitrary space, and let Q be a distribution over X n and P = P1×· · ·×Pn be a product distribution
on the same space. For A ⊂ X n−1, define the marginal densities

Q(i)(A) := Q(X\i ∈ A) and P (i)(A) = P (X\i ∈ A).

We then obtain the tensorization-type Han’s inequality for relative entropies.

Proposition 5.5. With the above definitions,

Dkl (Q||P ) ≤
n∑
i=1

[
Dkl (Q||P )−Dkl

(
Q(i)||P (i)

)]
.

Proof We have seen earlier in the notes (recall the definition (2.2.1) of the KL divergence as
a supremum over all quantizers and the surrounding discussion) that it is no loss of generality to
assume that X is discrete. Thus, noting that the probability mass functions

q(i)(x\i) =
∑
x

q(xi−1
1 , x, xni+1) and p(i)(x\i) =

∏
j 6=i

pj(xj),

we have that Han’s inequality (Proposition 5.4) is equivalent to

(n− 1)
∑
xn1

q(xn1 ) log q(xn1 ) ≥
n∑
i=1

∑
x\i

q(i)(x\i) log q(i)(x\i).

Now, by subtracting q(xn1 ) log p(xn1 ) from both sides of the preceding display, we obtain

(n− 1)Dkl (Q||P ) = (n− 1)
∑
xn1

q(xn1 ) log q(xn1 )− (n− 1)
∑
xn1

q(xn1 ) log p(xn1 )

≥
n∑
i=1

∑
x\i

q(i)(x\i) log q(i)(x\i)− (n− 1)
∑
xn1

q(xn1 ) log p(xn1 ).
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We expand the final term. Indeed, by the product nature of the distributions p, we have

(n− 1)
∑
xn1

q(xn1 ) log p(xn1 ) = (n− 1)
∑
xn1

q(xn1 )
n∑
i=1

log pi(xi)

=
n∑
i=1

∑
xn1

q(xn1 )
∑
j 6=i

log pi(xi)︸ ︷︷ ︸
=log p(i)(x\i)

=
n∑
i=1

∑
x\i

q(i)(x\i) log p(i)(x\i).

Noting that ∑
x\i

q(i)(x\i) log q(i)(x\i)−
∑
x\i

q(i)(x\i) log p(i)(x\i) = Dkl

(
Q(i)||P (i)

)
and rearranging gives the desired result.

Finally, we will prove the main result of this subsection: a tensorization identity for the entropy
H(Y ) for an arbitrary random variable Y that is a function of n independent random variables.
For this result, we use a technique known as tilting, in combination with the two variants of Han’s
inequality we have shown, to obtain the result. The tilting technique is one used to transform
problems of random variables into one of distributions, allowing us to bring the tools of information
and entropy to bear more directly. This technique is a common one, and used frequently in
large deviation theory, statistics, for heavy-tailed data, amont other areas. More concretely, let
Y = f(X1, . . . , Xn) for some non-negative function f . Then we may always define a tilted density

q(x1, . . . , xn) :=
f(x1, . . . , xn)p(x1, . . . , xn)

EP [f(X1, . . . , Xn)]
(5.1.5)

which, by inspection, satisfies
∫
q(xn1 ) = 1 and q ≥ 0. In our context, if f ≈ constant under the

distribution P , then we should have f(xn1 )p(xn1 ) ≈ cp(xn1 ) and so Dkl (Q||P ) should be small; we
can make this rigorous via the following tensorization theorem.

Theorem 5.6. Let X1, . . . , Xn be independent random variables and Y = f(Xn
1 ), where f is a

non-negative function. Define H(Y | X\i) = E[Y log Y | X\i]. Then

H(Y ) ≤ E
[ n∑
i=1

H(Y | X\i)
]
. (5.1.6)

Proof Inequality (5.1.6) holds for Y if and only if holds identically for cY for any c > 0, so
we assume without loss of generality that EP [Y ] = 1. We thus obtain that H(Y ) = E[Y log Y ] =
E[φ(Y )], where assign φ(t) = t log t. Let P have density p with respect to a base measure µ. Then
by defining the tilted distribution (density) q(xn1 ) = f(xn1 )p(xn1 ), we have Q(X n) = 1, and moreover,
we have

Dkl (Q||P ) =

∫
q(xn1 ) log

q(xn1 )

p(xn1 )
dµ(xn1 ) =

∫
f(xn1 )p(xn1 ) log f(xn1 )dµ(xn1 ) = EP [Y log Y ] = H(Y ).
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Similarly, if φ(t) = t log t, then

Dkl

(
Q(i)||P (i)

)
=

∫
Xn−1

(∫
f(xi−1

1 , x, xni+1)pi(x)dµ(x)

)
log

p(i)(x\i)
∫
f(xi−1

1 , x, xni+1)pi(x)dµ(x)

p(i)(x\i)
p(i)(x\i)dµ(x\i)

=

∫
Xn−1

E[Y | x\i] logE[Y | x\i]p(i)(x\i)dµ(x\i)

= E[φ(E[Y | X\i])].

The tower property of expectations then yields that

E[φ(Y )]− E[φ(E[Y | X\i])] = E[E[φ(Y ) | X\i]− φ(E[Y | X\i])] = E[H(Y | X\i)].

Using Han’s inequality for relative entropies (Proposition 5.4) then immediately gives

H(Y ) = Dkl (Q||P ) ≤
n∑
i=1

[
Dkl (Q||P )−Dkl

(
Q(i)||P (i)

)]
=

n∑
i=1

E[H(Y | X\i)],

which is our desired result.

Theorem 5.6 shows that if we can show that individually the conditional entropies H(Y | X\i)
are not too large, then the Herbst argument (Proposition 5.2 or its variant Proposition 5.3) allows
us to provide strong concentration inequalities for general random variables Y .

Examples and consequences

We now show how to use some of the preceding results to derive strong concentration inequalities,
showing as well how we may give convergence guarantees for a variety of procedures using these
techniques.

We begin with our most straightforward example, which is the bounded differences inequality.
In particular, we consider an arbitrary function f of n independent random variables, and we
assume that for all x1:n = (x1, . . . , xn), we have the bounded differences condition:

sup
x∈X ,x′∈X

∣∣f(x1, . . . , xi−1, x, xi+1, . . . , xn)− f(x1, . . . , xi−1, x
′, xi+1, . . . , xn)

∣∣ ≤ ci for all x\i.

(5.1.7)
Then we have the following result.

Proposition 5.7 (Bounded differences). Assume that f satisfies the bounded differences condi-
tion (5.1.7), where 1

4

∑n
i=1 c

2
i ≤ σ2. Let Xi be independent. Then Y = f(X1, . . . , Xn) is σ2-sub-

Gaussian.

Proof We use a similar integration argument to the Herbst argument of Proposition 5.2, and
we apply the tensorization inequality (5.1.6). First, let U be an arbitrary random variable taking
values in [a, b]. We claim that if ϕU (λ) = E[eλU ] and ψ(λ) = logϕU (λ) is its cumulant generating
function, then

H(eλU )

E[eλU ]
≤ λ2(b− a)2

8
. (5.1.8)
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To see this, note that

∂

∂λ
[λψ′(λ)− ψ(λ)] = ψ′′(λ), so λψ′(λ)− ψ(λ) =

∫ λ

0
tψ′′(t)dt ≤ λ2(b− a)2

8
,

where we have used the homework exercise XXXX (recall Hoeffding’s Lemma, Example 3.6), to

argue that ψ′′(t) ≤ (b−a)2

4 for all t. Recalling that

H(eλU ) = λϕ′U (λ)− ϕU (λ)ψ(λ) =
[
λψ′(λ)− ψ(λ)

]
ϕU (λ)

gives inequality (5.1.8).
Now we apply the tensorization identity. Let Z = eλY . Then we have

H(Z) ≤ E
[ n∑
i=1

H(Z | X\i)
]
≤ E

[ n∑
i=1

c2
iλ

2

8
E[eλZ | X\i]

]
=

n∑
i=1

c2
iλ

2

8
E[eλZ ].

Applying the Herbst argument gives the final result.

As an immediate consequence of this inequality, we obtain the following dimension independent
concentration inequality.

Example 5.8: Let X1, . . . , Xn be independent vectors in Rd, where d is arbitrary, and assume
that ‖Xi‖2 ≤ ci with probability 1. (This could be taken to be a general Hilbert space with
no loss of generality.) We claim that if we define

σ2 :=

n∑
i=1

c2
i , then P

(∥∥∥∥ n∑
i=1

Xi

∥∥∥∥
2

≥ t
)
≤ exp

(
−2

[t−
√
σ]

2
+

σ2

)
.

Indeed, we have that Y = ‖
∑n

i=1Xi‖2 satisfies the bounded differences inequality with param-
eters ci, and so

P
(∥∥∥∥ n∑

i=1

Xi

∥∥∥∥
2

≥ t
)

= P
(∥∥∥∥ n∑

i=1

Xi

∥∥∥∥
2

− E
∥∥∥∥ n∑
i=1

Xi

∥∥∥∥
2

≥ t− E
∥∥∥∥ n∑
i=1

Xi

∥∥∥∥
2

)

≤ exp

(
−2

[t− E‖
∑n

i=1Xi‖2]2+∑n
i=1 c

2
i

)
.

Noting that E[‖
∑n

i=1Xi‖2] ≤
√

E[‖
∑n

i=1Xi‖22] =
√∑n

i=1 E[‖Xi‖22] gives the result. 3

5.1.3 Concentration of convex functions

We provide a second theorem on the concentration properties of a family of functions that are quite
useful, for which other concentration techniques do not appear to give results. In particular, we
say that a function f : Rn → R is separately convex if for each i ∈ {1, . . . , n} and all x\i ∈ Rn−1

(or the domain of f), we have that

x 7→ f(x1, . . . , xi−1, x, xi+1, . . . , xn)

is convex. We also recall that a function is L-Lipschitz if |f(x) − f(y)| ≤ ‖x− y‖2 for all x, y ∈
Rn; any L-Lipschitz function is almost everywhere differentiable, and is L-Lipschitz if and only if
‖∇f(x)‖2 ≤ L for (almost) all x. With these preliminaries in place, we have the following result.
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Theorem 5.9. Let X1, . . . , Xn be independent random variables with Xi ∈ [a, b] for all i. Assume
that f : Rn → R is separately convex and L-Lipschitz with respect to the ‖·‖2 norm. Then

E[exp(λ(f(X1:n)− E[f(X1:n)]))] ≤ exp
(
λ2(b− a)2L2

)
for all λ ≥ 0.

We defer the proof of the theorem temporarily, giving two example applications. The first is to
the matrix concentration problem that motivates the beginning of this section.

Example 5.10: Let X ∈ Rm×n be a matrix with independent entries, where Xij ∈ [−1, 1]
for all i, j, and let |||·||| denote the operator norm on matrices, that is, |||A||| = supu,v{u>Av :
‖u‖2 ≤ 1, ‖v‖2 ≤ 1}. Then Theorem 5.9 implies

P(|||X||| ≥ E[|||X|||] + t) ≤ exp

(
− t

2

16

)
for all t ≥ 0. Indeed, we first observe that

| |||X||| − |||Y ||| | ≤ |||X − Y ||| ≤ ‖X − Y ‖Fr ,

where ‖·‖Fr denotes the Frobenius norm of a matrix. Thus the matrix operator norm is 1-
Lipschitz. Therefore, we have by Theorem 5.9 and the Chernoff bound technique that

P(|||X||| ≥ E[|||X|||] + t) ≤ exp(4λ2 − λt)

for all λ ≥ 0. Taking λ = t/8 gives the desired result. 3

As a second example, we consider Rademacher complexity. These types of results are important
for giving generalization bounds in a variety of statistical algorithms, and form the basis of a variety
of concentration and convergence results. We defer further motivation of these ideas to subsequent
chapters, just mentioning here that we can provide strong concentration guarantees for Rademacher
complexity or Rademacher chaos.

Example 5.11: Let A ⊂ Rn be any collection of vectors. The the Rademacher complexity of
the class A is

Rn(A) := E

[
sup
a∈A

n∑
i=1

aiεi

]
, (5.1.9)

where εi are i.i.d. Rademacher (sign) variables. Let R̂n(A) = supa∈A
∑n

i=1 aiεi denote the
empirical version of this quantity. We claim that

P(R̂n(A) ≥ Rn(A) + t) ≤ exp

(
− t2

16 diam(A)2

)
,

where diam(A) := supa∈A ‖a‖2. Indeed, we have that ε 7→ supa∈A a
>ε is a convex function,

as it is the maximum of a family of linear functions. Moreover, it is Lipschitz, with Lipschitz
constant bounded by supa∈A ‖a‖2. Applying Theorem 5.9 as in Example 5.10 gives the result.
3

Proof of Theorem 5.9 The proof relies on our earlier tensorization identity and a symmetriza-
tion lemma.
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Lemma 5.12. Let X,Y
iid∼ P be independent. Then for any function g : R→ R, we have

H(eλg(X)) ≤ λ2E[(g(X)− g(Y ))2eλg(X)1 {g(X) ≥ g(Y )}] for λ ≥ 0.

Moreover, if g is convex, then

H(eλg(X)) ≤ λ2E[(X − Y )2(g′(X))2eλg(X)] for λ ≥ 0.

Proof For the first result, we use the convexity of the exponential in an essential way. In
particular, we have

H(eλg(X)) = E[λg(X)eλg(X)]− E[eλg(X)] logE[eλg(Y )]

≤ E[λg(X)eλg(X)]− E[eλg(X)λg(Y )],

because log is concave and ex ≥ 0. Using symmetry, that is, that g(X) − g(Y ) has the same
distribution as g(Y )− g(X), we then find

H(eλg(X)) ≤ 1

2
E[λ(g(X)−g(Y ))(eλg(X)−eλg(Y ))] = E[λ(g(X)−g(Y ))(eλg(X)−eλg(Y ))1 {g(X) ≥ g(Y )}].

Now we use the classical first order convexity inequality—that a convex function f satisfies f(t) ≥
f(s)+f ′(s)(t−s) for all t and s, Theorem A.14 in the appendices—which gives that et ≥ es+es(t−s)
for all s and t. Rewriting, we have es−et ≤ es(s− t), and whenever s ≥ t, we have (s− t)(es−et) ≤
es(s− t)2. Replacing s and t with λg(X) and λg(Y ), respectively, we obtain

λ(g(X)− g(Y ))(eλg(X) − eλg(Y ))1 {g(X) ≥ g(Y )} ≤ λ2(g(X)− g(Y ))2eλg(X)1 {g(X) ≥ g(Y )} .

This gives the first inequality of the lemma.
To obtain the second inequality, note that if g is convex, then whenever g(x) − g(y) ≥ 0, we

have g(y) ≥ g(x) + g′(x)(y − x), or g′(x)(x− y) ≥ g(x)− g(y) ≥ 0. In particular,

(g(X)− g(Y ))21 {g(X) ≥ g(Y )} ≤ (g′(X)(X − Y ))2,

which gives the second result.

Returning to the main thread of the proof, we note that the separate convexity of f and the
tensorization identity of Theorem 5.6 imply

H(eλf(X1:n)) ≤ E
[ n∑
i=1

H(eλf(X1:n) | X\i)
]
≤ E

[ n∑
i=1

λ2E

[
(Xi − Yi)2

(
∂

∂xi
f(X1:n)

)2

eλf(X1:n) | X\i

] ]
,

where Yi are independent copies of the Xi. Now, we use that (Xi−Yi)2 ≤ (b−a)2 and the definition
of the partial derivative to obtain

H(eλf(X1:n)) ≤ λ2(b− a)2E[‖∇f(X1:n)‖22 e
λf(X1:n))].

Noting that ‖∇f(X)‖22 ≤ L2, and applying the Herbst argument, gives the result.
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Question 5.1 (A discrete isoperimetric inequality): Let A ⊂ Zd be a finite subset of the d-
dimensional integers. Let the projection mapping πj : Zd → Zd−1 be defined by

πj(z1, . . . , zd) = (z1, . . . , zj−1, zj+1, . . . , zd)

so that we “project out” the jth coordinate, and define the projected sets.

Aj = πj(A) = {πj(z) : z ∈ A}

=
{
z ∈ Zd−1 : there exists z? ∈ Z such that (z1, z2, . . . , zj−1, z?, zj , . . . , zd−1) ∈ A

}
.

Prove the Loomis-Whitney inequality, that is, that

card(A) ≤

 d∏
j=1

card(Aj)

 1
d−1

.
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Chapter 6

Privacy and disclosure limitation

In this chapter, we continue to build off of our ideas on stability in different scenarios, ranging from
model fitting and concentration to interactive data analyses. Here, we show how stability ideas
allow us to provide a new type of protection: the privacy of participants in studies. The major
challenge in this direction had, until the mid-2000s with the introduction of differential privacy—a
type of stability in likelihood ratios—been a satisfactory definition of privacy, because collection of
side information often results in unforeseen compromises of private information. Consequently, in
this chapter we focus on privacy notions based on differential privacy and its cousins, developing the
information-theoretic stability ideas helpful to understand the protections it is possible to provide.

6.1 Disclosure limitation, privacy, and definitions

We begin this chapter with a few cautionary tales and examples, which motivate the coming
definitions of privacy that we consider. A natural belief might be that, given only certain summary
statistics of a large dataset, individuals in the data are protected. Yet this appears, by and large,
to be false. As an example, in 2008 Nils Homer and colleagues [86] showed that even releasing
aggregated genetic frequency statistics (e.g., frequency of single nucleotide polymorphisms (SNP) in
microarrays) can allow resolution of individuals within a database. Consequently, the US National
Institutes of Health (NIH), the Wellcome Trust, and the Broad Institute removed genetic summaries
from public access (along with imposing stricter requirements for private access) [128, 45].

Another hypothetical example may elucidate some of the additional challenges. Suppose that I
release a dataset that consists of the frequent times that posts are made worldwide that denigrate
government policies, but I am sure to remove all information such as IP addresses, usernames, or
other metadata excepting the time of the post. This might seem a priori reasonably safe, but now
suppose that an authoritarian government knows precisely when its citizens are online. Then by
linking the two datasets, the government may be able to track those who post derogatory statements
about their leaders.

Perhaps the strongest definition of privacy of databases and datasets is due to Dalenius [49], who
suggests that “nothing about an individual should be learnable from the database that cannot be
learned without access to the database.” But quickly, one can see that it is essentially impossible
to reconcile this idea with scientific advancement. Consider, for example, a situation where we
perform a study on smoking, and discover that smoking causes cancer. We publish the result, but
now we have “compromised” the privacy of everyone who smokes who did not participate in the
study: we know they are more likely to get cancer.
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In each of these cases, the biggest challenge is one of side information: how can we be sure
that, when releasing a particular statistic, dataset, or other quantity that no adversary will be able
to infer sensitive data about participants in our study? We articulate three desiderata that—we
believe—suffice for satisfactory definitions of privacy. In discussion of private releases of data, we
require a bit of vocabulary. We term a (randomized) algorithm releasing data either a privacy
mechanism, consistent with much of the literature in privacy, or a channel, mapping from the input
sample to some output space, in keeping with our statistical and information-theoretic focus. In
no particular order, we wish our privacy mechanism, which takes as input a sample Xn

1 ∈ X n and
releases some Z to satisfy the following.

i. Given the output Z, even an adversary knowing everyone in the study (excepting one person)
should not be able to test whether you belong to the study.

ii. If you participate in multiple “private” studies, there should be some graceful degradation
in the privacy protections, rather than a catastrophic failure. As part of this, any definition
should guarantee that further processing of the output Z of a private mechanism Xn

1 → Z, in
the form of the Markov chain Xn

1 → Z → Y , should not allow further compromise of privacy
(that is, a data-processing inequality). Additional participation in “private” studies should
continue to provide little additional information.

iii. The mechanism Xn
1 → Z should be resilient to side information: even if someone knows

something about you, he should learn little about you if you belong to Xn
1 , and this should

remain true even if the adversary later gleans more information about you.

The third desideratum is perhaps most elegantly phrased via a Bayesian perspective, where an
adversary has some prior beliefs π on the membership of a dataset (these prior beliefs can then
capture any side information the adversary has). Perhaps the strongest adversary might have a
prior supported on two samples {x1, . . . , xn} and {x′1, . . . , x′n} differing in only a single element; a
private mechanism would then guarantee his posterior beliefs (after the release Xn

1 → Z) should
not change significantly.

The challenges of side information motivate the definition of differential privacy, due to Dwork
et al. [63]. The key in differential privacy is that we the noisy channel releasing statistics provides
guarantees of bounded likelihood ratios between neighboring samples, that is, samples differing in
only a single entry.

Definition 6.1 (Differential privacy). Let Q be a Markov kernel from X n to an output space Z.
Then Q is ε-differentially private if for all (measurable) sets S ⊂ Z and all samples xn1 ∈ X n and
yn1 ∈ X n differing in at most a single entry,

Q(Z ∈ S | xn1 )

Q(Z ∈ S | yn1 )
≤ eε. (6.1.1)

The intuition and original motivation for this definition are that an individual has little incentive
to participate (or not participate) in a study, as the individual’s data has limited effect on the
outcome.

The model (6.1.1) of differential privacy presumes that there is a trusted curator, such as a
hospital, researcher, or corporation, who can collect all the data into one centralized location, and
it is consequently known as the centralized model. A stronger model of privacy is the local model,
in which data providers trust no one, not even the data collector, and privatize their individual
data before the collector even sees it.
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Definition 6.2 (Local differential privacy). A channel Q from X to Z is ε-locally differentially
private if for all measurable S ⊂ Z and all x, x′ ∈ X ,

Q(Z ∈ S | x)

Q(Z ∈ S | x′)
≤ eε. (6.1.2)

It is clear that Definition 6.2 and the condition (6.1.2) are stronger than Definition 6.1: when
samples {x1, . . . , xn} and {x′1, . . . , x′n} differ in at most one observation, then the local model (6.1.2)
guarantees that the densities

dQ(Zn1 | {xi})
dQ(Zn1 | {x′i})

=

n∏
i=1

dQ(Zi | xi)
dQ(Zi | x′i)

≤ eε,

where the inequality follows because only a single ratio may contain xi 6= x′i.
In the remainder of this introductory section, we provide a few of the basic mechanisms in use

in differential privacy, then discuss its “semantics,” that is, its connections to the three desiderata
we outline above. In the coming sections, we revisit a few more advanced topics, in particular, the
composition of multiple private mechanisms and a few weakenings of differential privacy, as well as
more sophisticated examples.

6.1.1 Basic mechanisms

The basic mechanisms in either the local or centralized models of differential privacy use some type
of noise addition to ensure privacy. We begin with the simplest and oldest mechanism, randomized
response, for local privacy, due to Warner [137] in 1965.

Example 6.1 (Randomized response): We wish to have a participant in a study answer a
yes/no question about a sensitive topic (for example, drug use). That is, we would like to
estimate the proportion of the population with a characteristic (versus those without); call
these groups 0 and 1. Rather than ask the participant to answer the question specifically,
however, we give them a spinner with a face painted in two known areas, where the first
corresponds to group 0 and has area eε/(1 + eε) and the second to group 1 and has area
1/(1 + eε). Thus, when the participant spins the spinner, it lands in group 0 with probability
eε/(1 + eε). Then we simply ask the participant, upon spinning the spinner, to answer “Yes”
if he or she belongs to the indicated group, “No” otherwise.

Let us demonstrate that this randomized response mechanism provides ε-local differential
privacy. Indeed, we have

Q(Yes | x = 0)

Q(Yes | x = 1)
= e−ε and

Q(No | x = 0)

Q(No | x = 1)
= eε,

so that Q(Z = z | x)/Q(Z = z | x′) ∈ [e−ε, eε] for all x, z. That is, the randomized response
channel provides ε-local privacy. 3

The interesting question is, of course, whether we can still use this channel to estimate the
proportion of the population with the sensitive characteristic. Indeed, we can. We can provide
a somewhat more general analysis, however, which we now do so that we can give a complete
example.
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Example 6.2 (Randomized response, continued): Suppose that we have an attribute of
interest, x, taking the values x ∈ {1, . . . , k}. Then we consider the channel (of Z drawn
conditional on x)

Z =

{
x with probability eε

k−1+eε

Uniform([k] \ {x}) with probability k−1
k−1+eε .

This (generalized) randomized response mechanism is evidently ε-locally private, satisfying
Definition 6.2.

Let p ∈ Rk+, pT1 = 1 indicate the true probabilities pi = P(X = i). Then by inspection, we
have

P(Z = i) = pi
eε

k − 1 + eε
+ (1− pi)

1

k − 1 + eε
= pi

eε − 1

eε + k − 1
+

1

eε + k − 1
.

Thus, letting ĉn ∈ Rk+ denote the empirical proportion of the Z observations in a sample of
size n, we have

p̂n :=
eε + k − 1

eε − 1

(
ĉn −

1

eε + k − 1
1

)
satisfies E[p̂n] = p, and we also have

E
[
‖p̂n − p‖22

]
=

(
eε + k − 1

eε − 1

)2

E
[
‖ĉn − E[ĉn]‖22

]
=

1

n

(
eε + k − 1

eε − 1

)2 k∑
j=1

P(Z = j)(1−P(Z = j)).

As
∑

j P(Z = j) = 1, we always have the bound E[‖p̂n − p‖22] ≤ 1
n( e

ε+k−1
eε−1 )2.

We may consider two regimes for simplicity: when ε ≤ 1 and when ε ≥ log k. In the former
case—the high privacy regime—we have 1

k . P(Z = i) . 1
k , so that the mean `2 squared error

scales as 1
n
k2

ε2
. When ε ≥ log k is large, by contrast, we see that the error scales at worst as 1

n ,
which is the “non-private” mean squared error. 3

While randomized response is essentially the standard mechanism in locally private settings, in
centralized privacy, the “standard” mechanism is Laplace noise addition because of its exponential
tails. In this case, we require a few additional definitions. Suppose that we wish to release some
d-dimensional function f(Xn

1 ) of the sample Xn
1 , where f takes values in Rd. In the case that

f is Lipschitz with respect to the Hamming metric—that is, the counting metric on X n—it is
relatively straightforward to develop private mechanisms. For easier use in our future development,
for p ∈ [1,∞] and some distance-like function dist taking values in R+, we define the Lipschitz
constant Lipp,dist by

Lipp,dist(f) := sup
x,x′

{
‖f(x)− f(x′)‖p

dist(x, x′)
| dist(x, x′) > 0

}
.

The appropriate notion of distance in the case of (centralized) differential privacy is the Hamming
metric

dham({x1, . . . , xn}, {x′1, . . . , x′n}) =

n∑
i=1

1
{
xi 6= x′i

}
,

which counts the number of differences between samples x and x′. Differentially private mechanisms
(Definition 6.1) are most convenient to define for functions that are Lipschitz with respect to the
Hamming metric, because they allow simple noise addition strategies. In the privacy literature, the
Lipschitz constant of a function is often called the sensitivity.
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Example 6.3 (Laplace mechanisms): Recall the Laplace distribution, parameterized by a
shape parameter β, which has density on R defined by

p(w) =
1

2β
exp(−|w|/β),

and the analogous d-dimensional variant, which has density

p(w) =
1

(2β)2
exp(−‖w‖1 /β).

If W ∼ Laplace(β), W ∈ R, then E[W ] = 0 by symmetry, while E[W 2] = 1
β

∫∞
0 w2e−w/β = 2β2.

Suppose that f : X n → Rd has Lipschitz constant L with respect to the pairing ‖·‖1 and
dham, that is,

Lip1,dham
(f) = sup {‖f(xn1 )− f(yn1 )‖1 | dham(xn1 , y

n
1 ) ≤ 1} ≤ L

(you should convince yourself that this is an equivalent definition of the Lipschitz constant for
the Hamming metric). Then if we consider the mechanism defined by the addition of W ∈ Rd
with independent Laplace(L/ε) coordinates,

Z := f(Xn
1 ) +W, Wj

iid∼ Laplace(L/ε), (6.1.3)

we have that Z is ε-differentially private. Indeed, for samples x, x′ ∈ X n differing in at most
a single coordinate (say, xi 6= x′i), Z has density ratio

q(z | x)

q(z | x′)
= exp

(
− ε
L
‖f(x)− z‖1

)
·exp

( ε
L

∥∥f(x′)− z
∥∥

1

)
≤ exp

( ε
L

∥∥f(x)− f(x′)
∥∥

1

)
≤ exp(ε)

by the triangle inequality and that f is L-Lipschitz with respect to the Hamming metric. Thus
Z is ε-differentially private. Moreover, we have

E[‖Z − f(xn1 )‖22] =
2dL2

ε2
,

so that if L is small, we may report the value of f accurately. 3

The most common instances and applications of the Laplace mechanism are in estimation of
means and histograms. Let us demonstrate more carefully worked examples in these two cases.

Example 6.4 (Private one-dimensional mean estimation): Suppose that we have variables
Xi taking values in [−b, b] for some b <∞, and wish to estimate E[X]. A natural function to
release is then f(Xn

1 ) = Xn = 1
n

∑n
i=1Xi. This has Lipschitz constant 2b/n with respect to

the Hamming metric, because for any two samples x, x′ ∈ [−b, b]n differing in only entry i, we
have

|f(x)− f(x′)| = 1

n
|xi − x′i| ≤

2b

n

because xi ∈ [−b, b]. Thus the Laplace mechanism (6.1.3) with the choice variance W ∼
Laplace(2b/(nε)) yields

E[(Z − E[X])2] = E[(Xn − E[X])2] + E[(Z −Xn)2] =
1

n
Var(X) +

8b2

n2ε2
≤ b2

n
+

8b2

n2ε2
.

We can privately release means with little penalty so long as ε� n−1/2. 3
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Example 6.5 (Private histogram (multinomial) release): Suppose that we wish to estimate
a multinomial distribution, or put differently, a histogram. That is, we have observations
X ∈ {1, . . . , k}, where k may be large, and wish to estimate pj := P(X = j) for j = 1, . . . , k.
For a given sample xn1 , the empirical count vector p̂n with coordinates p̂n,j = 1

n

∑n
i=1 1 {Xi = j}

satisfies

Lip1,dham
(p̂n) ≤ 2

n
,

because swapping a single example xi for x′i may change the counts for at most two coordinates
j, j′ by 1. Consequently, the Laplace noise addition mechanism

Z = p̂n +W, Wj
iid∼ Laplace

(
2

nε

)
satisfies

E[‖Z − p̂n‖22] =
8k

n2ε2

and consequently

E[‖Z − p‖22] =
8k

n2ε2
+

1

n

k∑
j=1

pj(1− pj) ≤
8k

n2ε2
+

1

n
.

This example shows one of the challenges of differentially private mechanisms: even in the case
where the quantity of interest is quite stable (insensitive to changes in the underlying sample,
or has small Lipschitz constant), it may be the case that the resulting mechanism adds noise
that introduces some dimension-dependent scaling. In this case, the conditions on privacy
levels acceptable for good estimation—in that the rate of convergence is no different from the
non-private case, which achieves E[‖p̂n − p‖22] = 1

n

∑k
j=1 pj(1− pj) ≤

1
n are that ε� k

n . Thus,
in the case that the histogram has a large number of bins, the naive noise addition strategy
cannot provide as much protection without sacrificing efficiency.

If instead of `2-error we consider `∞ error, it is possible to provide somewhat more satisfying

results in this case. Indeed, we know that P(‖W‖∞ ≥ t) ≤ k exp(−t/b) for Wj
iid∼ Laplace(b),

so that in the mechanism above we have

P(‖Z − p̂n‖∞ ≥ t) ≤ k exp

(
− tnε

2

)
all t ≥ 0,

so using that each coordinate of p̂n is 1-sub-Gaussian, we have

E[‖Z − p‖∞] ≤ E[‖p̂n − p‖∞] + E[‖W‖∞] ≤
√

2 log k

n
+ inf
t≥0

{
t+

2k

nε
exp

(
− tnε

2

)}
≤
√

2 log k

n
+

2 log k

nε
+

2

nε
.

In this case, then, whenever ε � (n/ log k)−1/2, we obtain rate of convergence at least√
2 log k/n, which is a bit loose (as we have not controlled the variance of p̂n), but some-

what more satisfying than the k-dependent penalty above. 3
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6.1.2 Resilience to side information, Bayesian perspectives, and data processing

As we discuss earlier, one of the major challenges in the definition of privacy is to protect against
side information, especially because in the future, information about you may be compromised,
allowing various linkage attacks. With this in mind, we return to our three desiderata. First,
we note the following simple fact: if Z is a differentially private view of a sample Xn

1 , then any
downstream functions Y are also differentially private. That is, if we have Xn

1 → Z → Y , then for
any x, x′ ∈ X n with dham(x, x′) ≤ 1, we have for any set A that

P(Y ∈ A | x)

P(Y ∈ A | x′)
=

∫
P (Y ∈ A | z)q(z | x)dµ(z)∫
P (Y ∈ A | z)q(z | x′)dµ(z)

≤ eε
∫
P (Y ∈ A | z)q(z | x′)dµ(z)∫
P (Y ∈ A | z)q(z | x′)dµ(z)

= eε.

That is, any type of post-processing cannot reduce privacy.
With this simple idea out of the way, let us focus on our testing-based desideratum. In this

case, we consider a testing scenario, where an adversary wishes to test two hypotheses against one
another, where the hypotheses are

H0 : Xn
1 = xn1 vs. H1 : Xn

1 = (xi−1
1 , x′i, x

n
i+1),

so that the difference between the samples under H0 and H1 is only in the ith observation Xi ∈
{xi, x′i}. Now, for a channel taking inputs from X n and outputting Z ∈ Z, we define ε-conditional
hypothesis testing privacy by saying that

Q(Ψ(Z) = 1 | H0, Z ∈ A) +Q(Ψ(Z) = 0 | H1, Z ∈ A) ≥ 1− ε (6.1.4)

for all sets A ⊂ Z satisfying Q(A | H0) > 0 and Q(A | H1) > 0. That is, roughly, no matter
what value Z takes on, the probability of error in a test of whether H0 or H1 is true—even with
knowledge of xj , j 6= i—is high. We then have the following proposition.

Proposition 6.6. Assume the channel Q is ε-differentially private. Then Q is also ε̄ = 1− e−2ε ≤
2ε-conditional hypothesis testing private.

Proof Let Ψ be any test of H0 versus H1, and let B = {z | Ψ(z) = 1} be the acceptance region
of the test. Then

Q(B | H0, Z ∈ A) +Q(Bc | H1, Z ∈ A) =
Q(A,B | H0)

Q(A | H0)
+
Q(A,Bc | H1)

Q(A | H1)

≥ e−2εQ(A,B | H1)

Q(A | H1)
+
Q(A,Bc | H1)

Q(A | H1)

≥ e−2εQ(A,B | H1) +Q(A,Bc | H1)

Q(A | H1)
,

where the first inequality uses ε-differential privacy. Then we simply note that Q(A,B | H1) +
Q(A,Bc | H1) = Q(A | H1).

So we see that (roughly), even conditional on the output of the channel, we still cannot test whether
the initial dataset was x or x′ whenever x, x′ differ in only a single observation.

An alternative perspective is to consider a Bayesian one, which allows us to more carefully
consider side information. In this case, we consider the following thought experiment. An adversary
has a set of prior beliefs π on X n, and wishes to test whether a particular value x belongs to a given
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sample, which we denote by S for notational convenience. Now, consider the posterior distribution
π(· | Z) induced by observing an output of the channel Z ∼ Q(· | S). We will show that, under
a few mild conditions on the types of priors allowed, that differential privacy guarantees that the
posterior beliefs of the adversary about who belongs to the sample cannot change much. There is
some annoyance in this calculation in that the order of the sample may be important, but it at
least gets toward some semantic interpretation of differential privacy.

We consider the adversary’s beliefs on whether a particular value x belongs to the sample, but
more precisely, we consider whether Xi = x. We assume that the prior density π on X n satisfies

π(xn1 ) = π\i(x\i)πi(xi), (6.1.5)

where x\i = (xi−1
1 , xni+1) ∈ X n−1. That is, the adversary’s beliefs about person i in the dataset

are independent of his beliefs about the other members of the dataset. (We assume that π is
a density with respect to a measure µ on X n−1 × X , where dµ(s, x) = dµ(s)dµ(x).) Under the
condition (6.1.5), we have the following proposition.

Proposition 6.7. Let Q be an ε-differentially private channel and let π be any prior distribution
satisfying condition (6.1.5). Then for any z, the posterior density πi on Xi satisfies

e−επi(x) ≤ πi(x | Z = z) ≤ eεπi(x).

Proof We abuse notation and for a sample s ∈ X n−1, where s = (xi−1
1 , xni+1), we let s ⊕i x =

(xi−1
1 , x, xni+1). Letting µ be the base measure on X n−1 × X with respect to which π is a density

and q(· | xn1 ) be the density of the channel Q, we have

πi(x | Z = z) =

∫
s∈Xn−1 q(z | s⊕i x)π(s⊕i x)dµ(s)∫

s∈Xn−1

∫
x′∈X q(z | s⊕i x′)π(s⊕i x′)dµ(s, x′)

(?)

≤ eε
∫
s∈Xn−1 q(z | s⊕i x)π(s⊕i x)dµ(s)∫

s∈Xn−1

∫
x′∈X q(z | s⊕i x)π(s⊕i x′)dµ(s)dµ(x′)

= eε
∫
s∈Xn−1 q(z | s⊕i x)π\i(s)dµ(s)πi(x)∫

s∈Xn−1 q(z | s⊕i x)π\i(s)dµ(s)
∫
x′∈X πi(x

′)dµ(x′)

= eεπi(x),

where inequality (?) follows from ε-differential privacy. The lower bound is similar.

There are other versions of prior and posterior beliefs that differential privacy may protect
against. If the channel is invariant to permutations, so that Q(· | xn1 ) = Q(· | (xσ(1), . . . , xσ(n))) for
any permutation σ of {1, . . . , n}, then we may change Proposition 6.7 to reflect a semantics more
in line with the question of whether a particular value x belongs to a sample Xn

1 at all, so long
as the adversary’s prior beliefs follow a product distribution that is also appropriately invariant
to permutations. The conditioning and ordering gymnastics necessary for this are a bit tedious,
however, so we omit the development. Roughly, however, we see that Proposition 6.7 captures the
idea that even if an adversary has substantial prior knowledge—in the form of a prior distribution
π on the ith value Xi and everything else in the sample—the posterior cannot change much.

We may devise an alternative view by considering Bayes factors, which measure how much prior
and posterior distributions differ after observations. In this case, we have the following immediate
result.

105



Stanford Statistics 311/Electrical Engineering 377 John Duchi

Proposition 6.8. A channel Q from X n → Z is ε-differentially private if and only if for any prior
distribution π on X n and any observation z ∈ Z, the posterior odds satisfy

π(x | z)
π(x′ | z)

≤ eε

for all x, x′ ∈ X n with dham(x, x′) ≤ 1.

Proof We have π(x | z) = q(z | x)π(x)/q(z), where q is the density (conditional or marginal) of
Z ∈ Z. Then

π(x | z)
π(x′ | z)

=
q(z | x)π(x)

q(z | x′)π(x′)
≤ eε π(x)

π(x′)

for all z, x, x′ if and only if Q is ε-differentially private.

Thus we see that private channels mean that prior and posterior odds between two neighboring
samples cannot change substantially, no matter what the observation Z actually is.

6.2 Weakenings of differential privacy

One challenge with the definition of differential privacy is that it can sometimes require the addition
of more noise to a desired statistic than is practical for real use. Consequently, it is of interest to
develop weaker notions that—at least hopefully—still provide appropriate and satisfactory privacy
protections. To that end, we develop two additional types of privacy that allow the development of
more sophisticated and lower-noise mechanisms than standard differential privacy; their protections
are necessarily somewhat weaker but may be satisfactory.

We begin with a definition that allows (very rare) catostrophic privacy breaches—as long as the
probability of this event is extremely small (say, 10−20), these may be acceptable.

Definition 6.3. Let ε, δ ≥ 0. A channel Q from X n to output space Z is (ε, δ)-differentially private
if for all (measurable) sets S ⊂ Z and all neighboring samples xn1 ∈ X n and yn1 ∈ X n,

Q(Z ∈ S | xn1 ) ≤ eεQ(Z ∈ S | yn1 ) + δ. (6.2.1)

One typically thinks of δ in the definition above as satisfying δ = δn, where δn � n−k for any
k ∈ N. (That is, δ decays super-polynomially to zero.)

An alternative definition of privacy is based on Rényi divergences between distributions. These
are essentially simply monotonically transformed f divergences (recall Chapter 2.2), though their
structure is somewhat more amenable to analysis, especially in our contexts. With that in mind,
we define

Definition 6.4. Let P and Q be distributions on a space X with densities p and q (with respect to
a measure µ). For α ∈ [1,∞], the Rényi-α-divergence between P and Q is

Dα (P ||Q) :=
1

α− 1
log

∫ (
p(x)

q(x)

)α
q(x)dµ(x).

Here, the values α ∈ {1,∞} are defined in terms of their respective limits.
Rényi divergences satisfy exp((α − 1)Dα (P ||Q)) = Df (P ||Q) for the f -divergence defined by

f(t) = tα − 1, so that they inherit a number of the properties of such divergences. We enumerate
a few here for later reference.
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Proposition 6.9 (Basic facts on Rényi divergence). Rényi divergences satisfy the following prop-
erties.

i. The divergence Dα (P ||Q) is non-decreasing in α.

ii. limα↓1Dα (P ||Q) = Dkl (P ||Q) and limα↑∞Dα (P ||Q) = supx{p(x)/q(x) | q(x) > 0}.

iii. Let K(· | x) be a Markov kernel from X → Z as in Proposition 2.15, and let KP and KQ be
the induced marginals of P and Q under K, respectively. Then Dα (KP ||KQ) ≤ Dα (P ||Q).

Each of these properties we leave as an exercise to the reader, noting that property i is a conse-
quence of Hölder’s inequality, property ii is by L’Hopital’s rule, and property iii is an immediate
consequence of Proposition 2.15. Rényi divergences also tensorize nicely—generalizing the ten-
sorization properties of KL-divergence and information of Chapter 2 (recall the chain rule (2.1.6)
for KL-divergence)—and we return to this later. As a preview, however, these tensorization proper-
ties allow us to prove that the composition of multiple private data releases remains appropriately
private.

With these preliminaries in place, we can then provide

Definition 6.5 (Rényi-differential privacy). Let ε ≥ 0 and α ∈ [1,∞]. A channel Q from X n to
output space Z is (ε, α)-Rényi private if for all neighboring samples xn1 , y

n
1 ∈ X n,

Dα (Q(· | xn1 )||Q(· | yn1 )) ≤ ε. (6.2.2)

Clearly, any ε-differentially private channel is also (ε, α)-Rényi private for any α ≥ 1; as we soon
see, we can provide tighter guarantees than this.

6.2.1 Basic mechanisms

We now describe a few of the basic mechanisms that provide guarantees of (ε, δ)-differential privacy
and (ε, α)-Rényi privacy. The advantage for these settings is that they allow mechanisms that more
naturally handle vectors in `2, and smoothness with respect to Euclidean norms, than with respect
to `1, which is most natural for pure ε-differential privacy. A starting point is the following example,
which we will leverage frequently.

Example 6.10 (Rényi divergence between Gaussian distributions): Consider normal distri-
butions N(µ0,Σ) and N(µ1,Σ). Then

Dα (N(µ0,Σ)||N(µ1,Σ)) =
α

2
(µ0 − µ1)TΣ−1(µ0 − µ1). (6.2.3)

To see this equality, we compute the appriate integral of the densities. Let p and q be the
densities of N(µ0,Σ) and N(µ1,Σ), respectively. Then letting Eµ1 denote expectation over
X ∼ N(µ1,Σ), we have∫ (

p(x)

q(x)

)α
q(x)dx = Eµ1

[
exp

(
−α

2
(X − µ0)TΣ−1(X − µ0) +

α

2
(X − µ1)TΣ−1(X − µ1)

)]
(i)
= Eµ1

[
exp

(
−α

2
(µ0 − µ1)TΣ−1(µ0 − µ1) + α(µ0 − µ1)TΣ−1(X − µ1)

)]
(ii)
= exp

(
−α

2
(µ0 − µ1)TΣ−1(µ0 − µ1) +

α2

2
(µ0 − µ1)TΣ−1(µ0 − µ1)

)
,
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where equality (i) is simply using that (x − a)2 − (x − b)2 = (a − b)2 + 2(b − a)(x − b) and
equality (ii) follows because (µ0 − µ1)TΣ−1(X − µ1) ∼ N(0, (µ1 − µ0)TΣ−1(µ1 − µ0)) under
X ∼ N(µ1,Σ). Noting that −α+ α2 = α(α− 1) and taking logarithms gives the result. 3

Example 6.10 is the key to developing different privacy-preserving schemes under Rényi privacy.
Let us reconsider Example 6.3, except that instead of assuming the function f of interest is smooth
with respect to `1 norm, we use the `2-norm.

Example 6.11 (Gaussian mechanisms): Suppose that f : X n → Rd has Lipschitz constant
L with respect to the `2-norm (for the Hamming metric dham), that is,

Lip2,dham
(f) = sup {‖f(xn1 )− f(yn1 )‖2 | dham(xn1 , y

n
1 ) ≤ 1} ≤ L.

Then, for any variance σ2 > 0, we have that the mechanism

Z = f(Xn
1 ) +W, W ∼ N(0, σ2I)

satisfies
Dα

(
N(f(x), σ2)||N(f(x′), σ2)

)
=

α

2σ2

∥∥f(x)− f(x′)
∥∥2

2
≤ α

2σ2
L2

whenever dham(x, x′) ≤ 1. Thus, if we have Lipschitz constant L and desire (ε, α)-Rényi

privacy, we may take σ2 = L2α
2ε , and then the mechanism

Z = f(Xn
1 ) +W, W ∼ N

(
0,
L2α

2ε
I

)
(6.2.4)

satisfies (ε, α)-Rényi privacy. 3

Certain special cases can make this more concrete. Indeed, suppose we wish to estimate a mean

E[X] where Xi
iid∼ P for some distribution P such that ‖Xi‖2 ≤ r with probability 1 for some

radius.

Example 6.12 (Bounded mean estimation with Gaussian mechanisms): Letting f(Xn
1 ) = Xn

be the sample mean, where Xi satisfy ‖Xi‖2 ≤ r as above, we see that∥∥f(x)− f(x′)
∥∥

2
≤ 2r

n

whenever dham(x, x′) ≤ 1. In this case, the Gaussian mechanism (6.2.4) with L = 2r
n yields

E[‖Z − f(Xn
1 )‖22] = E[‖W‖22] =

2dr2α

n2ε
.

Then we have

E[‖Z − E[X]‖22] = E[‖f(Xn
1 )− E[X]‖22] + E[‖Z − f(Xn

1 )‖22] ≤ r2

n
+

2dr2α

n2ε
.

It is not immediately apparent how to compare this quantity to the case for the Laplace mech-
anism in Example 6.3, but we will return to this shortly once we have developed connections
between the various privacy notions we have developed. 3
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6.2.2 Connections between privacy measures

An important consideration in our development of privacy definitions and mechanisms is to un-
derstand the relationships between the definitions, and when a channel Q satisfying one of the
definitions satisfies one of our other definitions. Thus, we collect a few different consequences of
our definitions, which help to show the various definitions are stronger or weaker than others.

First, we argue that ε-differential privacy implies stronger values of Rényi-differential privacy.

Proposition 6.13. Let ε ≥ 0 and let P and Q be distributions such that e−ε ≤ P (A)/Q(A) ≤ eε

for all measurable sets A. Then for any α ∈ [1,∞],

Dα (P ||Q) ≤ min

{
3α

2
ε2, ε

}
.

As an immediate corollary, we have

Corollary 6.14. Let ε ≥ 0 and assume that Q is ε-differentially private. Then for any α ≥ 1, Q
is (min{3α

2 ε
2, ε}, α)-Rényi private.

Before proving the proposition, let us see its implications for Example 6.12 versus estimation
under ε-differential privacy. Let ε ≤ 1, so that roughly to have “similar” privacy, we require that our
Rényi private channels satisfy Dα (Q(· | x)||Q(· | x′)) ≤ ε2. The `1-sensitivity of the mean satisfies
‖xn − x′n‖1 ≤

√
d‖xn − x′n‖2 ≤

√
dr/n for neighboring x, x′. Then the Laplace mechanism (6.1.3)

satisfies

E[‖ZLaplace − E[X]‖22] = E[
∥∥Xn − E[X]

∥∥2

2
] +

2r2

n2ε2
· d2,

while the Gaussian mechanism under (ε2, α)-Rényi privacy will yield

E[‖ZGauss − E[X]‖22] = E[
∥∥Xn − E[X]

∥∥2

2
] +

2r2

n2ε2
· dα.

This is evidently better than the Laplace mechanism whenever α < d.
Proof of Proposition 6.13 We asume that P and Q have densities p and q with respect to a
base measure µ, which is no loss of generality, whence the ratio condition implies that e−ε ≤ p/q ≤ eε
and Dα (P ||Q) = 1

α−1 log
∫

(p/q)αqdµ. We prove the result assuming that α ∈ (1,∞), as continuity
gives the result for α ∈ {1,∞}.

First, it is clear that Dα (P ||Q) ≤ ε always. For the other term in the minimum, let us assume
that α ≤ 1 + 1

ε and ε ≤ 1. If either of these fails, the result is trivial, because for α > 1 + 1
ε we

have 3
2αε

2 ≥ 3
2ε ≥ ε, and similarly ε ≥ 1 implies 3

2αε
2 ≥ ε.

Now we perform a Taylor approximation of t 7→ (1 + t)α. By Taylor’s theorem, we have for any
t > −1 that

(1 + t)α = 1 + αt+
α(α− 1)

2
(1 + t̃)α−2t2

for some t̃ ∈ [0, t] (or [t, 0] if t < 0). In particular, if 1 + t ≤ c, then (1 + t)α ≤ 1 + αt +
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α(α−1)
2 max{1, cα−2}t2. Now, we compute the divergence: we have

exp ((α− 1)Dα (P ||Q)) =

∫ (
p(z)

q(z)

)α
q(z)dµ(z)

=

∫ (
1 +

p(z)

q(z)
− 1

)α
q(z)dµ(z)

≤ 1 + α

∫ (
p(z)

q(z)
− 1

)
q(z)dµ(z) +

α(α− 1)

2
max{1, exp(ε(α− 2))}

∫ (
p(z)

q(z)
− 1

)2

q(z)dµ(z)

≤ 1 +
α(α− 1)

2
eε[α−2]+ · (eε − 1)2.

Now, we know that α− 2 ≤ 1/ε− 1 by assumption, so using that log(1 + x) ≤ x, we obtain

Dα (P ||Q) ≤ α

2
(eε − 1)2 · exp([1− ε]+).

Finally, a numerical calculation yields that this quantity is at most 3α
2 ε

2 for ε ≤ 1.

We can also provide connections from (ε, α)-Rényi privacy to (ε, δ)-differential privacy, and
then from there to ε-differential privacy. We begin by showing how to develop (ε, δ)-differential
privacy out of Rényi privacy. Another way to think about this proposition is that whenever two
distributions P and Q are close in Rényi divergence, then there is some limited “amplification” of
probabilities that is possible in moving from one to the other.

Proposition 6.15. Let P and Q satisfy Dα (P ||Q) ≤ ε. Then for any set A,

P (A) ≤ exp

(
α− 1

α
ε

)
Q(A)

α−1
α .

Consequently, for any δ > 0,

P (A) ≤ min

{
exp

(
ε+

1

α− 1
log

1

δ

)
Q(A), δ

}
≤ exp

(
ε+

1

α− 1
log

1

δ

)
Q(A) + δ.

As above, we have an immediate corollary to this result.

Corollary 6.16. Assume that Q is (ε, α)-Rényi private. Then it is also (ε+ 1
α−1 log 1

δ , δ)-differentially
private for any δ > 0.

Before turning to the proof of the proposition, we show how it can provide prototypical (ε, δ)-
private mechanisms via Gaussian noise addition.

Example 6.17 (Gaussian mechanisms, continued): Consider Example 6.11, where f : X n →
Rd has `2-sensitivity L. Then by Example 6.10, the Gaussian mechanism Z = f(Xn

1 ) +W for

W ∼ N(0, σ2I) is (αL
2

2σ2 , α)-Rényi private for all α ≥ 1. Combining this with Corollary 6.16,
the Gaussian mechanism is also(

αL2

2σ2
+

1

α− 1
log

1

δ
, δ

)
-differentially private
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for any δ > 0 and α > 1. Optimizing first over α by taking α = 1 +
√

2σ2 log δ−1/L2, we see

that the channel is ( L
2

2σ2 +
√

2L2 log δ−1/σ2, δ)-differentially private. Thus we have that the
Gaussian mechanism

Z = f(Xn
1 ) +W, W ∼ N(0, σ2I) for σ2 = L2 max

{
8 log 1

δ

ε2
,
1

ε

}
(6.2.5)

is (ε, δ)-differentially private.
To continue with our `2-bounded mean-estimation in Example 6.12, let us assume that

ε < 8 log 1
δ , in which case the Gaussian mechanism (6.2.5) with L2 = r2/n2 achieves (ε, δ)-

differential privacy, and we have

E[‖ZGauss − E[X]‖22] = E[
∥∥Xn − E[X]

∥∥2

2
] +O(1)

r2

n2ε2
· d log

1

δ
.

Comparing to the previous cases, we see an improvement over the Laplace mechanism whenever
log 1

δ � d, or that δ � e−d. 3

Proof of Proposition 6.15 We use the data processing inequality of Proposition 6.9.iii, which
shows that

ε ≥ Dα (P ||Q) ≥ 1

α− 1
log

[(
P (A)

Q(A)

)α
Q(A)

]
.

Rearranging and taking exponentials, we immediately obtain the first claim of the proposition.
For the second, we require a bit more work. First, let us assume that Q(A) > e−εδ

α
α−1 . Then

we have by the first claim of the proposition that

P (A) ≤ exp

(
α− 1

α
ε+

1

α
log

1

Q(A)

)
Q(A)

≤ exp

(
α− 1

α
ε+

1

α
ε+

1

α− 1
log

1

δ

)
Q(A) = exp

(
ε+

1

α− 1
log

1

δ

)
Q(A).

On the other hand, when Q(A) ≤ e−εδ
α
α−1 , then again using the first result of the proposition,

P (A) ≤ exp

(
α− 1

α
(ε+ logQ(A))

)
≤ exp

(
α− 1

α

(
ε− ε+

α

α− 1
log δ

))
= δ.

This gives the second claim of the proposition.

Finally, we develop our last set of connections, which show how we may relate (ε, δ)-private
channels with ε-private channels. To provide this definition, we require one additional weakened
notion of divergence, which relates (ε, δ)-differential privacy to Rényi-α-divergence with α = ∞.
We define

Dδ
∞ (P ||Q) := sup

S⊂X

{
log

P (S)− δ
Q(S)

| P (S) > δ

}
,

where the supremum is over measurable sets. Evidently equivalent to this definition is that
Dδ
∞(P ||Q) ≤ ε if and only if

P (S) ≤ eεQ(S) + δ for all S ⊂ X .

Then we have the following theorem.
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Lemma 6.18. Let ε > 0 and δ ∈ (0, 1), and let P and Q be distributions on a space X .

(i) We have Dδ
∞(P ||Q) ≤ ε if and only if there exists a probability distribution R on X such that

‖P −R‖TV ≤ δ and D∞(R||Q) ≤ ε.

(ii) We have Dδ
∞(P ||Q) ≤ ε and Dδ

∞(Q||P ) ≤ ε if and only if there exist distributions P0 and Q0

such that

‖P − P0‖TV ≤
δ

1 + eε
, ‖Q−Q0‖TV ≤

δ

1 + eε
,

and
D∞ (P0||Q0) ≤ ε and D∞ (Q0||P0) ≤ ε.

The proof of the lemma is technical, so we defer it to Section 6.5.1. The key application of the
lemma—which we shall see presently—is that (ε, δ)-differentially private algorithms compose in
elegant ways.

6.2.3 Side information protections under weakened notions of privacy

We now provide some discusion of the side information protections these weaker notions of privacy
protect. We begin with the (ε, δ)-differential privacy, which is slightly more challenging to discuss
than (ε, α)-Rényi privacy. As in Proposition 6.8, we consider Bayes factors and ratios of prior
and posterior divergences, which makes somewhat clearer the types of side information we protect
against.

To state the result, we require a definition.

Definition 6.6. Distributions P and Q on a space X are (ε, δ)-close if for all measurable A

P (A) ≤ eεQ(A) + δ and Q(A) ≤ eεP (A) + δ.

Letting p and q denote their densities (with respect to any shared base measure), they are (ε, δ)-
pointwise close if the set

A := {x ∈ X : e−εq(x) ≤ p(x) ≤ eεq(x)} = {x ∈ X : e−εp(x) ≤ q(x) ≤ eεp(x)}

satisfies P (A) ≥ 1− δ and Q(A) ≥ 1− δ.

The following lemma shows that these definitions are strongly related.

Lemma 6.19. If P and Q are (ε, δ)-close, then for any β > 0, the sets

A+ := {x : p(x) > e(1+β)εq(x)} and A− := {x : p(x) ≤ e−(1+β)εq(x)}

satisfy

max{P (A+), Q(A−)} ≤ eβεδ

eβε − 1
, max{P (A−), Q(A+)} ≤ e−εδ

eβε − 1
.

Conversely, if P and Q are (ε, δ)-pointwise close, then

P (A) ≤ eεQ(A) + δ and Q(A) ≤ eεP (A) + δ

for all sets A.
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Proof Let A = A+ = {x : p(x) > e(1+β)εq(x)}. Then

P (A) ≤ eεQ(A) + δ ≤ e−βεP (A) + δ,

so that P (A) ≤ δ
1−e−βε . Similarly,

Q(A) ≤ e−(1+β)εP (A) ≤ e−βεQ(A) + e−(1+β)εδ,

so thatQ(A) ≤ e−(1+β)εδ/(1−e−βε) = e−εδ/(eβε−1). The set A− satisfies the symmetric properties.
For the converse result, let B = {x : e−εq(x) ≤ p(x) ≤ eεq(x)}. Then for any set A we have

P (A) = P (A ∩B) + P (A ∩Bc) ≤ eεQ(A ∩B) + δ ≤ eεQ(A) + δ,

and the same inequalities yield Q(A) ≤ eεP (A) + δ.

That is, (ε, δ)-close distributions are (2ε, e
ε+e−ε

eε−1 δ)-pointwise close, and (ε, δ)-pointewise close dis-
tributions are (ε, δ)-close.

A minor extension of this lemma (taking β = 1 and applying the lemma twice) yields the
following result.

Lemma 6.20. Let P0, P1, P2 be distributions on a space X , each (ε, δ)-close. Then for any i, j, k,
j 6= k, the set

Ajk :=

{
x ∈ X : log

pj(x)

pk(x)
> 3ε

}
satisfies Pi(Ajk) ≤ Cδmax{ε−1, 1}

for a numerical constant C ≤ 2.

With Lemma 6.19 in hand, we can provide two analogues of Proposition 6.8 in the (ε, δ)-private
case.

Proposition 6.21. Let Q be a (ε, δ)-differentially private channel from X n → Z. Then for any
neighboring x0, x, x

′ ∈ X n, we have with probability at least 1 − δ over the draw of Z ∼ Q(· | x0),
the posterior odds satisfy

π(x | z)
π(x′ | z)

≤ e3ε π(x)

π(x′)
.

Proof Let x0 ∈ X n denote the “true” sample. Now consider the three channels Q(· | x0), Q(· | x),
and Q(· | x′). Then by Lemma 6.20, with probability at least 1 − 2δmax{ε−1, 1}, Z ∼ Q(· | x0)
belongs to the set A = {z ∈ Z | e−3εq(z | x) ≤ q(z | x′) ≤ e3εq(z | x)}. Calculating the odds ratios
immediately gives the result.

So we see that, as long as two samples x, x′ are neighboring, then an adversary is extremely unlikely
to be able to glean substantially distinguishing information between the samples.

Proposition 6.21 is suggestive of a heuristic in differential privacy, which is that δ > 0 should
be much smaller than the inverse of the size of the domain X , so that if N = |X | then δ � 1/N .
In fact, we can use Proposition 6.21 to make this recommendation somewhat more concrete.

Corollary 6.22. Let Q be a (ε, δ)-differentially private channel from X n → Z. Assume that
N = |X | < ∞, and let xn−1

1 ∈ X n−1 be arbitrary. Then for any x0 ∈ X , with probability at least
1− δN2 over the draw Z ∼ Q(· | xn−1

1 , x0)

π(xn−1
1 , x | Z)

π(xn−1
1 , y | Z)

≤ e3επ(xn−1
1 , x)

π(xn−1
1 , x)

for all x, y ∈ X .
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So as long as (say) δ � 1/N3 even an adversary with strong prior information on the dataset is
unlikely to be substantially more accurate in predicting membership in the dataset.

JCD Comment: Do the Rényi privacy part.

6.3 Composition and privacy based on divergence

One of the major challenges in privacy is to understand what happens when a user participates in
multiple studies, each providing different privacy guarantees. In this case, we might like to under-
stand and control privacy losses even when the mechanisms for information release may depend
on one another. Conveniently, all Rényi divergences provide strong guarantees on composition,
essentially for free, and these then allow us to prove strong results on the composition of multiple
private mechanisms.

6.3.1 Composition of Rényi-private channels

A natural idea to address composition is to attempt to generalize our chain rules for KL-divergence
and related ideas to Rényi divergences. Unfortunately, this plan of attack does not quite work, as
there is no generally accepted definition of a conditional Rényi divergence, and associated chain
rules do not sum naturally. In situations in which individual divergence of associated elements of a
joint distribution have bounded Rényi divergence, however, we can provide some natural bounds.

Indeed, consider the following essentially arbitrary scheme for data generation: we have distri-
butions P and Q on a space Zn, where Zn1 ∼ P and Zn1 ∼ Q may exhibit arbitrary dependence. If,
however, we can bound the conditional Rényi divergence between P (Zi | Zi−1

1 ) and Q(Zi | Zi−1
1 ),

we can provide some natural tensorization guarantees. To set notation, let Pi(· | zi−1
1 ) be the the

(regular) conditional probability of Zi conditional on Zi−1
1 = zi−1

1 under P , and similarly for Qi.
We have the following theorem.

Theorem 6.23. Let the conditions above hold, εi < ∞ for i = 1, . . . , n, and α ∈ [1,∞]. Assume
that conditional on zi−1

1 , we have Dα

(
Pi(· | zi−1

1 )||Qi(· | zi−1
1 )

)
≤ εi. Then

Dα (Pn1 ||Qn1 ) ≤
n∑
i=1

εi.

Proof We assume without loss of generality that the conditional distributions Pi(· | zi−1
1 ) and
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Qi are absolutely continuous with respect to a base measure µ on Z.1 Then we have

Dα (Pn1 ||Qn1 ) =
1

α− 1
log

∫ n∏
i=1

(
pi(zi | zi−1

1 )

qi(zi | zi−1
1 )

)α
qi(zi | zi−1

1 )dµn(zn1 )

=
1

α− 1
log

∫
Zn−1

1

[∫ (
pn(zn | zn−1

1 )

qn(zn | zn−1
1 )

)α
qn(zn | zn−1

1 )dµ(zn)

]
n−1∏
i=1

(
pi
qi

)α
qidµ

n−1

≤ 1

α− 1
log

∫
Zn−1

1

exp((α− 1)εn)
n−1∏
i=1

(
pi(zi | zi−1

1 )

qi(zi | zi−1
1 )

)α
qi(zi | zi−1

1 )dµn−1(zn−1
1 )

= εn +Dα

(
Pn−1

1 ||Qn−1
1

)
.

Applying the obvious inductive argument then gives the result.

6.3.2 Privacy games and composition

To understand arbitrary composition of private channels, let us consider a privacy “game,” where
an adversary may sequentially choose a dataset—in an arbitrary way—and then observes a private
release Zi of some mechanism applied to the dataset and the dataset with one entry (observation)
modified. The adversary may then select a new dataset, and repeat the game. We then ask whether
the resulting sequence of (private) observations Zk1 remains private. Figure 6.1 captures this in an

algorithmic form. Letting Z
(b)
i denote the random observations under the bit b ∈ {0, 1}, whether

Input: Family of channels Q and bit b ∈ {0, 1}.
Repeat: for k = 1, 2, . . .

i. Adversary chooses arbitrary space X , n ∈ N, and two datasets x(0), x(1) ∈ X n with
dham(x(0), x(1)) ≤ 1.

ii. Adversary chooses private channel Qk ∈ Q.

iii. Adversary observes one sample Zk ∼ Qk(· | x(b)).

Figure 6.1. The privacy game. In this game, the adversary may not directly observe
the private b ∈ {0, 1}.

the distributions of (Z
(0)
1 , . . . , Z

(0)
k ) and (Z

(1)
1 , . . . , Z

(1)
k ) are substantially different. Note that, in

the game in Fig. 6.1, the adversary may track everything, and even chooses the mechanisms Qk.

Now, let Z(0) = (Z
(0)
1 , . . . , Z

(0)
k ) and Z(1) = (Z

(1)
1 , . . . , Z

(1)
k ) be the outputs of the privacy game

above, and let their respective marginal distributions be Q(0) and Q(1). We then make the following
definition.

1This is no loss of generality, as the general definition of f -divergences as suprema over finite partitions, or
quantizations, of each Xi and Yi separately, as in our discussion of KL-divergence in Chapter 2.2.2. Thus we may
assume Z is discrete and µ is a counting measure.
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Definition 6.7. Let ε ≥ 0, α ∈ [1,∞], and k ∈ N. A collection Q of channels satisfies (ε, α)-Rényi
privacy under k-fold adaptive composition if, in the privacy game in Figure 6.1, the distributions
Q(0) and Q(1) on Z(0) and Z(1), respectively, satisfy Dα

(
Q(0)||Q(1)

)
≤ ε and Dα

(
Q(1)||Q(0)

)
≤ ε.

Let δ > 0. Then a collection Q of channels satisfies (ε, δ)-differential privacy under k-fold
adaptive composition if Dδ

∞(Q(0)||Q(1)) ≤ ε and Dδ
∞(Q(1)||Q(0)) ≤ ε.

By considering a special case centered around a particular individual in the game 6.1, we can gain
some intuition for the definition. Indeed, suppose that an individual has some data x0; in each
round of the game the adversary generates two datasets, one containing x0 and the other identical
except that x0 is removed. Then satisfying Definition 6.7 captures the intuition that an individual’s
privacy remains protected, even in the face of multiple (private) accesses of the individual’s data.

As an immediate corollary to Theorem 6.23, we then have the following.

Corollary 6.24. Assume that each channel in the game in Fig. 6.1 is (εi, α)-Rényi private. Then
the arbitrary composition of k such channels remains (

∑k
i=1 εi, α)-Rényi private.

More sophisticated corollaries are possible once we start to use the connections between privacy
measures we outline in Section 6.2.2. In this case, we can develop so-called advanced composition
rules, which sometimes suggest that privacy degrades more slowly than might be expected under
adaptive composition.

Corollary 6.25. Assume that each channel in the game in Fig. 6.1 is ε-differentially private. Then
the composition of k such channels is kε-differentially private. Additionally, the composition of k
such channels is (

3k

2
ε2 +

√
6k log

1

δ
· ε, δ

)
differentially private for all δ > 0.

Proof The first claim is immediate: forQ(0), Q(1) as in Definition 6.7, we know thatDα

(
Q(0)||Q(1)

)
≤

kε for all α ∈ [1,∞] by Theorem 6.23 coupled with Proposition 6.13 (or Corollary 6.14).
For the second claim, we require a bit more work. Here, we use the bound 3α

2 ε
2 in the Rényi

privacy bound in Corollary 6.14. Then we have for any α ≥ 1 that

Dα

(
Q(0)||Q(1)

)
≤ 3kα

2
ε2

by Theorem 6.23. Now we apply Proposition 6.15 and Corollary 6.16, which allow us to conclude
(ε, δ)-differential privacy from Rényi privacy. Indeed, by the preceding display, setting η = 1 + α,
we have that the composition is (3k

2 ε
2 + 3kη

2 ε2 + 1
η log 1

δ , δ)-differentially private for all η > 0 and
δ > 0. Optimizing over η gives the second result.

We note in passing that it is possible to get slightly sharper results than those in Corollary 6.25;

indeed, using ideas from Exercise 3.3 it is possible to achieve (kε(eε−1)+
√

2k log 1
δ ε, δ)-differential

privacy under adaptive composition.
A more sophisticated result, which shows adaptive composition for (ε, δ)-differentially private

channels, is also possible using Lemma 6.18.
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Corollary 6.26. Assume that each channel in the game in Fig. 6.1 is (ε, δ)-differentially private.
Then the composition of k such channels is (kε, kδ)-differentially private. Additionally, they are(

3k

2
ε2 +

√
6k log

1

δ0
· ε, δ0 +

kδ

1 + eε

)
differentially private for all δ0 > 0.

Proof Consider as above the channelsQi in Fig. 6.1. As each satisfiesDδ
∞(Qi(· | x(0))||Qi(· | x(1))) ≤

ε and Dδ
∞(Qi(· | x(1))||Qi(· | x(0))) ≤ ε, Lemma 6.18 guarantees the existence (at each sequential

step, which may depend on the preceding i−1 outputs) of probability measures Q
(0)
i and Q

(1)
i such

that D∞(Q
(1−b)
i ||Q(b)

i ) ≤ ε, ‖Q(b)
i −Qi(· | x(b))‖TV ≤ δ/(1 + eε) for b ∈ {0, 1}.

Now, note that by construction (and Theorem 6.23) we haveDα

(
Q

(b)
1 · · ·Q

(b)
k ||Q

(b)
)
≤ min{3kα

2 ε2, kε},
where Q(b) denotes the joint distribution on Z1, . . . , Zk under bit b. We also have by the triangle

inequality that ‖Q(b)
1 · · ·Q

(b)
k −Q

(b)‖TV ≤ kδ/(1 + eε) for b ∈ {0, 1}. As a consequence, we see (as

in the proof of Corollary 6.25) that the composition is (3k
2 ε

2 + 3kη
2 ε2 + 1

η log 1
δ0
, δ0 + kδ/(1 + eε))-

differentially private for all η > 0 and δ0. Optimizing gives the result.

As a consequence of these results, we see that whenever the privacy parameter ε < 1, it is
possible to compose multiple privacy mechanisms together and have privacy penalty scaling only
as the worse of

√
kε and kε2, which is substantially better than the “naive” bound of kε. Of course,

a challenge here—relatively unfrequently discussed in the privacy literature—is that when ε ≥ 1,
which is a frequent case for practical deployments of privacy, all of these bounds are much worse
than a naive bound that k-fold composition of ε-differentially private algorithms is kε-differentially
private.

6.4 Advanced mechanisms

In this section, we cover a number of more advanced mechanisms than those that we have touched
on to this point. There is a vast literature on the development of private estimation and learning
schemes, and we touch only the iceberg here; our view is biased by our preferences and interests.

The exponential mechanism

Stochastic gradient methods and local privacy

Consider the risk minimization problem

minimize
θ∈Θ

L(θ) := EP [`(θ;X)] (6.4.1)

where `(·;x) is convex for each x ∈ X and EP denotes expectation taken over X ∼ P . A standard
approach to solving problems of the form (6.4.1), is to use the stochastic gradient method, which
iterates for k = 1, 2, . . ., beginning from some θ0 ∈ Θ,

i. Draw Xk
iid∼ P

ii. Compute stochastic gradient gk = ∇θ`(θk;Xk)
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iii. Update
θk+1 = ProjΘ(θk − ηkgk) (6.4.2)

where ηk > 0 is a non-increasing sequence of stepsizes and ProjΘ denotes Euclidean projection onto
Θ, that is,

ProjΘ(θ0) = argmin
θ∈Θ

{
‖θ − θ0‖22

}
.

The analysis of such stochastic gradient procedures constitutes an entire field on its own. The
important fact is that in the iteration (6.4.2), it is unimportant that gk = ∇θ`(θk;Xk) precisely,
but all that is required is that we have unbiased gradient estimates E[gk | θk] = ∇L(θk). To keep
matters simple, we present one typical type of result, which we do not prove. In the theorem, we
assume that the stochastic gradients g = g(θ,X,W ) for some random variable W independent of
X and θ.

Proposition 6.27 (Bach and Moulines [14], Theorem 3). Assume that θ? = argminθ L(θ) belongs
to the interior of Θ, is unique, and that ∇2L(θ?) � 0. Let the stepsizes ηk = η0k

−β for some
β ∈ (1/2, 1). Additionally assume that θ 7→ ∇`(θ;x) is L(x) Lipschitz on Θ with E[L(X)2] < ∞
and θ 7→ ∇2`(θ;x) is Lipschitz on Θ. Then

E[
∥∥θn − θ?∥∥2

2
]1/2 =

√
tr(∇2L(θ?)−1Σ∇2L(θ?)−1)

n
+O

(
1

n1−β/2

)
where θn = 1

n

∑n
k=1 θk and Σ = Cov(g(θ?, X,W )).

This result is in fact optimal—no method can achieve better convergence in n in the leading term
when g(θ?, X,W ) = ∇`(θ?;X)—and shows that the convergence rate slows the larger the covariance
Σ of the stochastic gradients taken at θ? is.

The importance of this result is that we can develop locally private procedures for fitting large
scale models using the iteration (6.4.2) by adding noise to or appropriately limiting the stochastic
gradients ∇`(θ;x). Indeed, a natural strategy is to, at each iteration (6.4.2), perturb the stochastic
gradients via some (conditional) mean-zero noise, sufficient to guarantee some type of privacy. We
consider a specialized version of this problem, where we assume the stochastic gradient vectors
belong to the `2-ball of radius M , so that ‖∇`(θ;x)‖2 ≤ M for all θ ∈ Θ and x ∈ X . We wish to
develop a scheme providing ε-local differential privacy for individual contributors of data points x.
In this case, the first idea might be to add independent Laplacian noise, but (as we have seen in
Example 6.3) this may add noise of too large a magnitude. Instead, we develop a new mechanism
based on uniform sampling on the sphere Sd−1 = {u ∈ Rd | ‖u‖2 = 1} ⊂ Rd.

We begin with a vector v ∈ Rd. Then the mechanism proceeds as follows:

set T =

{
1 with probability eε

eε+1

0 otherwise

and conditional on T = t, we draw

W | (T, v) ∼

{
Uniform({w ∈ Sd−1 : 〈w, v〉 ≥ 0}) if T = 1

Uniform({w ∈ Sd−1 : 〈w, v〉 ≤ 0}) if T = 0.
(6.4.3)

By inspection, W is a ε-locally differentially private view of v, and we have

E[W | v] =
eε − 1

eε + 1
Cd

v

‖v‖2
,
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eε

eε + 1

1

eε + 1

v

Figure 6.2. Local ε-differentially private sampling of a vector v on the surface of the `2-ball. With
probability eε

1+eε , draw W uniformly from the hemisphere in the direction of v, with probability 1
1+eε

draw uniformly from the opposite hemisphere.

where Cd = E[U1 | U1 ≥ 0] for U ∼ Uniform(Sd−1), where U1 denotes the first coordinate of U ∈ Rd.
See Figure 6.2 for a graphical depiction of this algorithm. In this case, a calculation yields that

Cd := E[U1 | U1 ≥ 0] =
2√
π

Γ(d2 + 1)

dΓ(d−1
2 + 1)

&
1√
d
,

where the inequality is a consequence of Stirling’s approximation to the gamma function. (The
first coordinate U1 has the same distribution as 2B − 1, where B ∼ Beta(d−1

2 , d−1
2 ).)

With this derivation, we see how we may define a channel that preserves ε-local privacy and
computes unbiased stochastic gradients. At iteration k, we let gk = ∇`(θk;Xk) as in the itera-
tion (6.4.2). Then, we scale gk, which satisfies ‖gk‖2 ≤M , so that it lies on the surface of the ball:
we set

g̃k =

{
+gk/ ‖gk‖2 w.p. 1

2 +
‖gk‖2
2M

−gk/ ‖gk‖2 w.p. 1
2 −

‖gk‖2
2M ,

so that E[g̃k | gk] = 1
M gk. Then given this vector, we draw Wk according to the mechanism (6.4.3),

and then set

Zk = M
1

Cd

eε + 1

eε − 1
Wk = M

eε + 1

eε − 1

√
π

2

dΓ(d−1
2 + 1)

Γ(d2 + 1)
Wk, (6.4.4)

which then satisfies E[Zk | gk] = gk, so that it is a valid stochastic gradient.
Combining the mechanism (6.4.4) into the stochastic gradient iteration (6.4.2), where we replace

gk with Zk via
θk+1 = ProjΘ(θk − ηkZk), (6.4.5)

we have the following corollary to Proposition 6.27.
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Corollary 6.28. Let the conditions of Proposition 6.27 hold. Then the private stochastic gradient
iteration (6.4.5) satisfies

E
[∥∥θn − θ?∥∥2

2

]1/2
≤ c
√
M · e

ε + 1

eε − 1

√
tr(∇2L(θ?)−2)

n
+O

(
1

n1−β/2

)
.

for a numerical constant c ≤ 2. There exist problems for which this inequality is sharp to within a
numerical constant.

Proof Evidently, all we need to do is to compute the asymptotic variance Σ = E[Z∞Z
T
∞],

where Z∞ denotes the output of the sampling scheme (6.4.5) at the limit point θ∞ = θ?, because
E[Z∞] = E[∇`(θ?;X)] = 0. Let W ∼ Uniform(Sd−1). Then for v ∈ Sd−1 and t ∈ [0, 1] we have by
rotational symmetry that

dE[WW T | 〈W, v〉 = t] = (1− t2)(I − vvT ) + t2vvT ,

and so dE[WW T | 〈W, v〉 ≥ 0] = (1 − C2
d)(I − vvT ) + C2

dvv
T for Cd = E[U1 | U1 ≥ 0] as above.

Thus, we obtain that

E[Z∞Z
T
∞]

=
eε

eε + 1
E
[
E
[
Z∞Z

T
∞ | 〈Z∞,∇`(θ?;X)〉 ≥ 0, X

]]
+

1

eε + 1
E
[
E
[
Z∞Z

T
∞ | 〈Z∞,∇`(θ?;X)〉 ≤ 0, X

]]
= E

[
E
[
Z∞Z

T
∞ | 〈Z∞,∇`(θ?;X)〉 ≥ 0, X

]]
=

1

d

(
M
eε + 1

eε − 1

√
π

2

dΓ(d−1
2 + 1)

Γ(d2 + 1)

)2

·
[
(1− C2

d)(I − Σ?) + C2
dΣ?

]
,

where Σ? = E[∇`(θ?;X)∇`(θ?;X)T / ‖∇`(θ?;X)‖22] satisfies tr(Σ?) = 1 and Σ? ≺ I. Consequently,
we have

Σ := E[Z∞Z
T
∞] � c ·M2

[
eε + 1

eε − 1

]2

d · I

where c ≤ 4 is a numerical constant. Substituting this in Proposition 6.27 gives the corollary.
The sharpness of the result comes from considering estimating the mean of vectors X drawn

uniformly from the unit sphere Sd−1 with loss `(θ;x) = 1
2 ‖θ − x‖

2
2.

Let us inspect and understand this quantity a bit, considering the time (or sample size) it
takes to solve the problem (6.4.1) with and without privacy. Assume for simplicity that Σ =
Cov(∇`(θ?;X)) � (M2/d)I, which is the natural scaling for vectors satisfying ‖∇`(θ?;X)‖2 ≤ M
that are (roughly) isometric, that is, have approximately scaled identity covariance. Then for a fixed
accuracy γ = E[‖θn − θ?‖22]1/2, if N(γ) denotes the sample size necessary to solve problem (6.4.1)
to accuracy γ in the non-private case, so that we have roughly

N(γ) ≈ M2 tr(∇2L(θ?)−2)

dγ2
,

then in the locally private case the necessary sample size for our scheme (6.4.5) is

Npriv(γ) &
M2 tr(∇2L(θ?)−2)

γ2
·
(
eε + 1

eε − 1

)2

= d ·
(
eε + 1

eε − 1

)2

·N(γ).

That is, for ε . 1, there is a degradation in sample complexity of N(γ) 7→ dN(γ)/ε2. As we shall
see later in the lecture notes, this degradation is essentially unavoidable.

120



Stanford Statistics 311/Electrical Engineering 377 John Duchi

Sparse vectors

6.5 Deferred proofs

6.5.1 Proof of Lemma 6.18

We prove the first statement of the lemma first. Let us assume there existsR such that ‖P −R‖TV ≤
δ and D∞ (R||Q) ≤ ε. Then for any set S we have

P (S) ≤ R(S) + δ ≤ eεQ(S) + δ, i.e. log
P (S)− δ
Q(S)

≤ ε,

which is equivalent to Dδ
∞(P ||Q) ≤ ε. Now, let us assume that Dδ

∞(P ||Q) ≤ ε, whence we must
construct the distribution R.

We assume w.l.o.g. that P and Q have densities p, q, and define the sets

S := {x : p(x) > eεq(x)} and T := {x : p(x) < q(x)}.

On these sets, we have 0 ≤ P (S)− eεQ(S) ≤ δ by assumption, and we then define a distribution R
with density that we partially specify via

x ∈ S ⇒ r(x) := eεq(x) < p(x)

x ∈ (T ∪ S)c ⇒ r(x) := p(x) ≤ eεq(x) and r(x) ≥ q(x).

Now, we note that eεq(x) ≥ p(x) ≥ q(x) for x ∈ (S ∪ T )c, and thus

Q(S) +Q(Sc ∩ T c) ≤ eεQ(S) + P (Sc ∩ T c)
= R(S) +R(Sc ∩ T c) (6.5.1)

= eεQ(S) + P (Sc ∩ T c) < P (S) + P (Sc ∩ T c).

In particular, when x ∈ T , we may take the density r so that p(x) ≤ r(x) ≤ q(x), as

R(S) +R(Sc ∩ T c) + P (T ) < 1 and R(S) +R(Sc ∩ T c) +Q(T ) > 1

by the inequalities (6.5.1), and so that R(X ) = 1. With this, we evidently have r(x) ≤ eεq(x) by
construction, and because S ⊂ T c, we have

R(T )−P (T ) = P (T c)−R(T c) = P (S ∩T c)−R(S ∩T c) +P (Sc∩T c)−R(Sc∩T c) = P (S)−R(S),

where we have used that r = p on (T ∪ S)c by construction. Thus we find that

‖P −R‖TV =
1

2

∫
S
|r − p|+ 1

2

∫
T
|r − p| = 1

2
(P (S)−R(S)) +

1

2
(R(T )− P (T ))

= P (S)−R(S) = P (S)− eεQ(S) ≤ δ

by assumption.
Now, we turn to the second statement of the lemma. We start with the easy direction, where

we assume that P0 and Q0 satisfy D∞(P0||Q0) ≤ ε and D∞(Q0||P0) ≤ ε as well as ‖P − P0‖TV ≤ δ
and ‖Q−Q0‖TV ≤ δ. Then for any set S we have

P (S) ≤ P0(S) +
δ

1 + eε
≤ eεQ0(S) +

δ

1 + eε
≤ eεQ(S) + eεδ +

δ

1 + eε
,
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or Dδ
∞(P ||Q) ≤ ε. The other direction is similar.

We consider the converse direction, where we have both Dδ
∞(P ||Q) ≤ ε and Dδ

∞(Q||P ) ≤ ε. Let
us construct P0 and Q0 as in the statement of the lemma. Define the sets

S := {x : p(x) > eεq(x)} and S′ := {x : q(x) > eεp(x)}

as well as the sets

T := {x : eεq(x) ≥ p(x) ≥ q(x)} and T ′ := {x : e−εq(x) ≤ p(x) < q(x)},

so that S, S′, T, T ′ are all disjoint, and X = S ∪S′ ∪T ∪T ′. We begin by constructing intermediate
measures—which end up not being probabilities—P1 and Q1, which we modify slightly to actually
construct P0 and Q0. We first construct densities similar to our construction above for part (i),
setting

x ∈ S ⇒ p1(x) := eεq1(x), q1(x) :=
1

1 + eε
(p(x) + q(x))

x ∈ S′ ⇒ q1(x) := eεp1(x), p1(x) :=
1

1 + eε
(p(x) + q(x)).

Now, define the two quantities

α := P (S)− P1(S) = P (S)− eε

1 + eε
(P (S) +Q(S)) =

P (S)− eεQ(S)

1 + eε
≤ δ

1 + eε
.

and similarly

α′ := Q(S′)−Q1(S′) =
Q(S′)− eεP (S′)

1 + eε
≤ δ

1 + eε
.

Note also that we have P (S) − P1(S) = Q1(S) − Q(S) and Q(S′) − Q1(S′) = P1(S′) − P (S′) by
construction.

We assume w.l.o.g. that α ≥ α′, so that if β = α− α′ ≥ 0, we have β ≤ δ
1+eε , and we have the

sandwiching

P1(S) + P1(S′) + P (T ∪ T ′) = P1(S) + P1(S′) + 1− P (S ∪ S′) = 1− β < 1

because S and S′ are disjoint and T< ∪ T> = (S ∪ S′)c, and similarly

Q1(S) +Q1(S′) +Q(T ∪ T ′) = Q1(S) +Q1(S′) + 1−Q(S ∪ S′) = 1 + β > 1.

Let p1 = p on the set T ∪T ′ and similarly for q1 = q. Then we have P1(X ) = 1−β, Q1(X ) = 1 +β,
and | log p1

q1
| ≤ ε.

Now, note that S ∪ T = {x : q1(x) ≥ p1(x)}, and we have

Q1(S) +Q1(T )− P1(S)− P1(T ) = Q1(S) +Q(T )− P1(S)− P (T )

≥ Q1(S) +Q1(S′) +Q(T ) +Q(T ′)− P1(S)− P1(S′)− P (T )− P (T ′) = 2β.

Now, (roughly) we decrease the density q1 to q0 on S ∪ T and increase p1 to p0 on S ∪ T , while
still satisfying q0 ≥ p0 on S ∪ T . In particular, we may choose the densities q0 = q1 on T ′ ∪ S′ and
p0 = p1 on T ′ ∪ S′, while choosing q0, p0 so that

p1(x) ≤ p0(x) ≤ q0(x) ≤ q1(x) on S ∪ T,

122



Stanford Statistics 311/Electrical Engineering 377 John Duchi

where
P0(S ∪ T ) = P1(S ∪ T ) + β and Q0(S ∪ T ) = Q1(S ∪ T )− β. (6.5.2)

With these choices, we evidently obtain Q0(X ) = P0(X ) = 1 and that D∞(P0||Q0) ≤ ε and
D∞(Q0||P0) ≤ ε by construction. It remains to consider the variation distances. As p0 = p on T ′,
we have

‖P − P0‖TV =
1

2

∫
S
|p− p0|+

1

2

∫
S′
|p− p0|+

1

2

∫
T
|p− p0|

=
1

2
(P (S)− P0(S)) +

1

2
(P0(S′)− P (S)) +

1

2
(P0(T )− P (T ))

≤ 1

2
(P (S)− P1(S))︸ ︷︷ ︸

=α

+
1

2
(P0(S′)− P (S))︸ ︷︷ ︸

=α′

+
1

2
(P0(T )− P (T ))︸ ︷︷ ︸

≤β

,

where the P0(T ) − P (T ) ≤ β claim follows becase p1(x) = p(x) on T and by the increasing
construction yielding equality (6.5.2), we have P0(T ) − P (T ) = P0(T ) − P1(T ) = β + P1(S) −
P0(S) ≤ β. In particular, we have ‖P − P0‖TV ≤

α+α′

2 + β
2 = α ≤ δ

1+eε . The argument that

‖Q−Q0‖TV ≤
δ

1+eε is similar.

6.6 Bibliography

Given the broad focus of this book, our treatment of privacy is necessarily somewhat brief, and
there is substantial depth to the subject that we do not cover.

The initial development of randomized response began with Warner [137], who proposed ran-
domized response in survey sampling as a way to collect sensitive data. This elegant idea remained
in use for many years, and a generalization to data release mechanisms with bounded likelihood
ratios—essentially, the local differential privacy definition 6.2—is due to Evfimievski et al. [68] in
2003 in the databases community. Dwork, McSherry, Nissim, and Smith [63] and the subsequent
work of Dwork et al. [62] defined differential privacy and its (ε, δ)-approximate relaxation. A small
industry of research has built out of these papers, with numerous extensions and developments.

The book of Dwork and Roth [61] surveys much of the field, from the perspective of computer
science, as of 2014. Lemma 6.18 is due to Dwork et al. [64], and our proof is based on theirs.

6.7 Exercises

Question 6.1 (Laplace mechanisms versus randomized response): In this question, you will
investigate using Laplace and randomized response mechanisms, as in Examples 6.3 and 6.1–6.2,
to perform locally private estimation of a mean, and compare this with randomized-response based
mechanisms.

We consider the following scenario: we have data Xi ∈ [0, 1], drawn i.i.d., and wish to estimate
the mean E[X] under local ε-differential privacy.

(a) The Laplace mechanism simply sets Zi = Xi+Wi for Wi
iid∼ Laplace(b) for some b. What choice

of b guarantees ε-local differential privacy?

(b) For your choice of b, let Zn = 1
n

∑n
i=1Xi. Give E[(Zn − E[X])2].
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(c) A randomized response mechanism for this case is the following: first, we randomly round Xi

to {0, 1}, by setting

X̃i =

{
1 with probability Xi

0 otherwise.

Conditional on X̃i = x, we then set

Zi =

{
x with probability eε

1+eε

1− x with probability 1
1+eε .

What is E[Zi]?

(d) For the randomized response Zi above, give constants a and b so that aZi − b is unbiased
for E[X], that is, E[aZi − b] = E[X]. Let θ̂n = 1

n

∑n
i=1(aZi − b) be your mean estimator.

What is E[(θ̂n − E[X])2]? Does this converge to the mean-square error of the sample mean
E[(Xn − E[X])2] = Var(X)/n as ε ↑ ∞?

(e) Let us consider a more sophisticated randomized response scheme. Define quantized values

b0 = 0, b1 =
1

k
, . . . , bk−1 =

k − 1

k
, bk = 1. (6.7.1)

Now consider a randomized response estimator that, when X ∈ [bj , bj+1] first rounds X ran-

domly to X̃ ∈ {bj , bj+1} so that E[X̃ | X] = X. Conditional on X̃ = j, we then set

Z =

{
j with probability eε

k+eε

Uniform({0, . . . , k} \ {j}) with probability k
k+eε .

Give a and b so that E[aZ − b] = E[X].

(f) For your values of a and b above, let θ̂n = 1
n

∑n
i=1(aZi − b). Give a (reasonably tight) bound

on E[(θ̂n − E[X])2].

(g) For any given ε > 0, give (approximately) the k in the choice of the number of bins (6.7.1) that
optimizes your bound, and (approximately) evaluate E[(θ̂n−E[X])2] with your choice of k. As
ε ↑ ∞, does this converge to Var(X)/n?

(h) Now, it is time to compare the simple randomized response estimator from part (d) with the
Laplace mechanism from part (b). For each of the following distributions, generate samples
of size N = 10, 100, 1000, 10000, and then for T = 25 tests, compute the two estimators, both
with ε = 1. Then plot the mean-squared error and confidence intervals for each of the two
methods as well as the sample mean without any privacy.

i. Uniform distribution: X ∼ Uniform[0, 1], with E[X] = 1/2.

ii. Bernoulli distribution: X ∼ Bernoulli(p), where p = .1.

iii. Uniform distribution: X ∼ Uniform[.49, .51], with E[X] = 1/2.

Do you prefer the Laplace or randomized response mechanism? In one sentence, why?
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Question 6.2 (Subsampling and privacy): We would like to estimate the mean E[X] of X ∼ P ,
where X ∈ B = {x ∈ Rd | ‖x‖2 ≤ 1}, the `2-ball in Rd. We investigate the extent to which
subsampling of a dataset can improve privacy by providing some additional anonymity. Consider
the following mechanism for estimating (scaled) multiples of this mean: for a dataset {X1, . . . , Xn},
we let Si ∈ {0, 1} be i.i.d. Bernoulli(q), that is, E[Si] = q, and then consider the algorithm

Z =

n∑
i=1

XiSi + σW, W ∼ N(0, Id). (6.7.2)

In this question, we investigate the Rényi privacy properties of the subsampling (6.7.2). (Recall
the Rényi divergence of Definition 6.4, Dα (P ||Q) = 1

α−1 log
∫

(p/q)αq.)
We consider a slight variant of Rényi privacy, where we define data matrices X and X ′ to be

adjacent if X ∈ Rd×n and X ′ ∈ Rd×n−1 where X ′ is X with a single column removed. Then a
mechanism is (ε, α)-Rényi private against single removals if and only if

Dα

(
Q(· | X)||Q(· | X ′)

)
≤ ε and Dα

(
Q(· | X ′)||Q(· | X)

)
≤ ε (6.7.3)

for all neighboring X and X ′ consisting of samples of size n and n− 1, respectively.

(a) Let Q(· | X) and Q(· | X ′) denote the channels for the mechanism (6.7.2) with data matrices
X = [x1 · · · xn−1 x] and X ′ = [x1 · · · xn−1] ∈ Rd×n. Let Pµ denote the normal distribution
N(µ, σ2I) with mean µ and covariance σ2I on Rd. Show that for any α ∈ (1,∞),

Dα

(
Q(· | X)||Q(· | X ′)

)
≤ Dα (qPx + (1− q)P0||P0)

and
Dα

(
Q(· | X ′)||Q(· | X)

)
≤ Dα (P0||qPx + (1− q)P0) .

(b) Show that for the Rényi α = 2-divergence,

D2 (qPx + (1− q)P0||P0) ≤ log
(

1 + q2
(

exp(‖x‖22 /σ
2)− 1

))
and

D2 (P0||qPx + (1− q)P0) ≤ log

(
1 +

q2

1− q

(
exp(‖x‖22 /σ

2)− 1
))

.

(Hint: Example 6.10.)

Consider two mechanisms for computing a sample mean Xn of vectors, where ‖xi‖2 ≤ b for all i.
The first is to repeat the following T times: for t = 1, 2, . . . , T ,

i. Draw S ∈ {0, 1}n with Si
iid∼ Bernoulli(q)

ii. Set Zt = 1
nq (XS + σsubWt), where Wt

iid∼ N(0, I), as in (6.7.2).

Then set Zsub = 1
T

∑T
t=1 Zt. The other mechanism is to simply set ZGauss = Xn + σGaussW for

W ∼ N(0, I).

(c) What level of privacy does Zsub have? That is, Zsub is (ε, 2)-Rényi private (against single
removals (6.7.3)). Give a tight upper bound on ε.

(d) What level of (ε, 2)-Rényi privacy does ZGauss provide?
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(e) Fix ε > 0, and assume that each mechanism Zsub and ZGauss have parameters chosen so that
they are (ε, 2)-Rényi private. Optimize over T, q, n, σsub in the subsampling mechanism and
σGauss in the Gaussian mechanism, and provide the sharpest bound you can on

E[
∥∥Zsub −Xn

∥∥2

2
] and E[

∥∥ZGauss −Xn

∥∥2

2
].

You may assume ‖xi‖2 = b for all i. (In your derivation, to avoid annoying constants, you
should replace log(1 + t) with its upper bound, log(1 + t) ≤ t, which is fairly sharp for t ≈ 0.)

Question 6.3 (Privacy and stochastic gradient methods): In this question, we develop tools for
private (and locally private) estimation in statistical risk minimization, focusing on problems of the
form (6.4.1).

Consider a stochastic gradient method using privacy (Eqs. (6.4.2) and (6.4.5)), where instead
of using the careful `2-sampling scheme of Fig. 6.2 we add Gaussian noise and subsample a random
fraction q of the dataset. We are given a sample Xn

1 of size n, and at each iteration k we draw a
sample Sk ⊂ {1, . . . , n}, where indices are chosen independently and P(i ∈ Sk) = q, then set

gk :=
1

nq

∑
i∈Sk

∇`(θk;Xi) + σsubWk

 (6.7.4)

where Wk ∼ N(0, I). We then update via the projection (6.4.2), i.e.

θk+1 = ProjΘ(θk − ηkgk)

where ηk = η0k
−β for some η0 > 0 and β ∈ (1/2, 1). We assume that ‖∇`(θ;x)‖2 ≤ M for all

x ∈ X , θ ∈ Θ.

(a) What level ε of (ε, 2)-Rényi privacy does one noisy gradient calculation (6.7.4) provide? (To
simplify your answer, you may assume that that σsub ≥M and q < 1− 1/e.)

Now we consider the application of the results for the stochastic gradient method in Proposition 6.27
in the context of the stochastic gradients (6.7.4). Let the empirical loss Ln(θ) = 1

n

∑n
i=1 `(θ;Xi).

You may assume all the conditions of Proposition 6.27, additionally assuming that ‖∇`(θ;x)‖2 ≤M
for all θ, x.

(b) Choose q ∈ (0, 1), σsub, and a number of iterations T to perform the stochastic gradient iteration
with gradients (6.7.4). Prove that for your choices, the resulting average θT = 1

T

∑T
k=1 θk is

(ε, 2)-Rényi private. (You may assume that ε ≤ 1.)

(c) Using your choices of q, σsub, and T from part (b), give the tightest upper bound you can on
the root mean squared error

E
[
‖θT − θ̂n‖22

]1/2

in terms of the sample size n, privacy level ε, bound M on ‖∇`(θ;x)‖2, ∇2Ln(θ̂n), and Σn :=

Covn(∇`(θ̂n, X)) where Covn denotes empirical covariance and θ̂n minimizes Ln(θ) over θ ∈ Θ.
(You may have unspecified numerical constants, and you may assume that θ̂n ∈ int Θ.)

(d) Assume that if θ(Xn
1 ) is any function of the data satisfying nE[‖θ(Xn

1 )− θ̂n‖22]→ 0 as n→∞
then E[‖θ(Xn

1 )− θ?‖22] satisfies the exact bound of Proposition 6.27. What does this say about
your estimator from part (c)?
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(e) An implementation for solving logistic regression. Construct a dataset as follows: for d = 25
and n = 2000, draw {Xi}ni=1 i.i.d. and uniform on Sd−1, and draw θ? ∈ Sd−1 uniformly as well.
Then for each i = 1, . . . , n, for y ∈ {±1} set

Yi = y with probability
1

1 + exp(−y〈θ?, Xi〉)

that is, following the binary logistic regression model.

Now, for the loss `(θ; (x, y)) = log(1 + exp(−y〈x, θ〉), implement

i. The non-private stochastic gradient method

ii. The sampling scheme from parts (a–c) of this problem

iii. The `2-locally private sampling approach in Eqs. (6.4.4)–(6.4.5).

Initialize each method at θ0 = 0, use stepsizes ηk = k−2/3, and set the privacy levels ε = 1 for
each problem. Use Θ = Rd so that there are no projections.

Repeat these experiments at least 10 times each, and then plot your errors ‖θ − θ?‖2 (in what-
ever format you like) for each of the non-private, (centralized) Rényi private, and locally private
approaches. Explain (briefly) your plots.
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Part II

Fundamental limits and optimality
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Chapter 7

Minimax lower bounds: the Fano and
Le Cam methods

Understanding the fundamental limits of estimation and optimization procedures is important for
a multitude of reasons. Indeed, developing bounds on the performance of procedures can give
complementary insights. By exhibiting fundamental limits of performance (perhaps over restricted
classes of estimators), it is possible to guarantee that an algorithm we have developed is optimal, so
that searching for estimators with better statistical performance will have limited returns, though
searching for estimators with better performance in other metrics may be interesting. Moreover,
exhibiting refined lower bounds on the performance of estimators can also suggest avenues for de-
veloping alternative, new optimal estimators; lower bounds need not be a fully pessimistic exercise.

In this set of notes, we define and then discuss techniques for lower-bounding the minimax risk,
giving three standard techniques for deriving minimax lower bounds that have proven fruitful in a
variety of estimation problems [139]. In addition to reviewing these standard techniques—the Le
Cam, Fano, and Assouad methods—we present a few simplifications and extensions that may make
them more “user friendly.”

7.1 Basic framework and minimax risk

Our first step here is to establish the minimax framework we use. When we study classical es-
timation problems, we use a standard version of minimax risk; we will also show how minimax
bounds can be used to study optimization problems, in which case we use a specialization of the
general minimax risk that we call minimax excess risk (while minimax risk handles this case, it is
important enough that we define additional notation).

Let us begin by defining the standard minimax risk, deferring temporarily our discussion of
minimax excess risk. Throughout, we let P denote a class of distributions on a sample space X ,
and let θ : P → Θ denote a function defined on P, that is, a mapping P 7→ θ(P ). The goal is
to estimate the parameter θ(P ) based on observations Xi drawn from the (unknown) distribution
P . In certain cases, the parameter θ(P ) uniquely determines the underlying distribution; for
example, if we attempt to estimate a normal mean θ from the family P = {N(θ, σ2) : θ ∈ R} with
known variance σ2, then θ(P ) = EP [X] uniquely determines distributions in P. In other scenarios,
however, θ does not uniquely determine the distribution: for instance, we may be given a class of
densities P on the unit interval [0, 1], and we wish to estimate θ(P ) =

∫ 1
0 (p′(t))2dt, where p is the
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density of P .1 In this case, θ does not parameterize P , so we take a slightly broader viewpoint of
estimating functions of distributions in these notes.

The space Θ in which the parameter θ(P ) takes values depends on the underlying statistical
problem; as an example, if the goal is to estimate the univariate mean θ(P ) = EP [X], we have
Θ ⊂ R. To evaluate the quality of an estimator θ̂, we let ρ : Θ × Θ → R+ denote a (semi)metric
on the space Θ, which we use to measure the error of an estimator for the parameter θ, and let
Φ : R+ → R+ be a non-decreasing function with Φ(0) = 0 (for example, Φ(t) = t2).

For a distribution P ∈ P, we assume we receive i.i.d. observations Xi drawn according to some
P , and based on these {Xi}, the goal is to estimate the unknown parameter θ(P ) ∈ Θ. For a
given estimator θ̂—a measurable function θ̂ : X n → Θ—we assess the quality of the estimate
θ̂(X1, . . . , Xn) in terms of the risk

EP
[
Φ
(
ρ(θ̂(X1 . . . , Xn), θ(P ))

)]
.

For instance, for a univariate mean problem with ρ(θ, θ′) = |θ − θ′| and Φ(t) = t2, this risk is the
mean-squared error. As the distribution P is varied, we obtain the risk functional for the problem,
which gives the risk of any estimator θ̂ for the family P.

For any fixed distribution P , there is always a trivial estimator of θ(P ): simply return θ(P ),
which will have minimal risk. Of course, this “estimator” is unlikely to be good in any real sense,
and it is thus important to consider the risk functional not in a pointwise sense (as a function of
individual P ) but to take a more global view. One approach to this is Bayesian: we place a prior
π on the set of possible distributions P, viewing θ(P ) as a random variable, and evaluate the risk
of an estimator θ̂ taken in expectation with respect to this prior on P . Another approach, first
suggested by Wald [136], which is to choose the estimator θ̂ minimizing the maximum risk

sup
P∈P

EP
[
Φ
(
ρ(θ̂(X1 . . . , Xn), θ(P ))

)]
.

An optimal estimator for this metric then gives the minimax risk, which is defined as

Mn(θ(P),Φ ◦ ρ) := inf
θ̂

sup
P∈P

EP
[
Φ
(
ρ(θ̂(X1, . . . , Xn), θ(P ))

)]
, (7.1.1)

where we take the supremum (worst-case) over distributions P ∈ P, and the infimum is taken over
all estimators θ̂. Here the notation θ(P) indicates that we consider parameters θ(P ) for P ∈ P and
distributions in P.

In some scenarios, we study a specialized notion of risk appropriate for optimization problems
(and statistical problems in which all we care about is prediction). In these settings, we assume
there exists some loss function ` : Θ × X → R, where for an observation x ∈ X , the value `(θ;x)
measures the instantaneous loss associated with using θ as a predictor. In this case, we define the
risk

LP (θ) := EP [`(θ;X)] =

∫
X
`(θ;x)dP (x) (7.1.2)

as the expected loss of the vector θ. (See, e.g., Chapter 5 of the lectures by Shapiro, Dentcheva,
and Ruszczyński [127], or work on stochastic approximation by Nemirovski et al. [114].)

1Such problems arise, for example, in estimating the uniformity of the distribution of a species over an area (large
θ(P ) indicates an irregular distribution).
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Example 7.1 (Support vector machines): In linear classification problems, we observe pairs
z = (x, y), where y ∈ {−1, 1} and x ∈ Rd, and the goal is to find a parameter θ ∈ Rd so
that sign(〈θ, x〉) = y. A convex loss surrogate for this problem is the hinge loss `(θ; z) =
[1− y〈θ, x〉]+; minimizing the associated risk functional (7.1.2) over a set Θ = {θ ∈ Rd :
‖θ‖2 ≤ r} gives the support vector machine [44]. 3

Example 7.2 (Two-stage stochastic programming): In operations research, one often wishes
to allocate resources to a set of locations {1, . . . ,m} before seeing demand for the resources.
Suppose that the (unobserved) sample x consists of the pair x = (C, v), where C ∈ Rm×m
corresponds to the prices of shipping a unit of material, so cij ≥ 0 gives the cost of shipping
from location i to j, and v ∈ Rm denotes the value (price paid for the good) at each location.
Letting θ ∈ Rm+ denote the amount of resources allocated to each location, we formulate the
loss as

`(θ;x) := inf
r∈Rm,T∈Rm×m

{∑
i,j

cijTij−
m∑
i=1

viri | ri = θi+

m∑
j=1

Tji−
m∑
j=1

Tij , Tij ≥ 0,

m∑
j=1

Tij ≤ θi
}
.

Here the variables T correspond to the goods transported to and from each location (so Tij is
goods shipped from i to j), and we wish to minimize the cost of our shipping and maximize
the profit. By minimizing the risk (7.1.2) over a set Θ = {θ ∈ Rm+ :

∑
i θi ≤ b}, we maximize

our expected reward given a budget constraint b on the amount of allocated resources. 3

For a (potentially random) estimator θ̂ : X n → Θ given access to a sample X1, . . . , Xn, we may
define the associated maximum excess risk for the family P by

sup
P∈P

{
EP
[
LP (θ̂(X1, . . . , Xn))

]
− inf
θ∈Θ

L(θ)

}
,

where the expectation is taken over Xi and any randomness in the procedure θ̂. This expression
captures the difference between the (expected) risk performance of the procedure θ̂ and the best
possible risk, available if the distribution P were known ahead of time. The minimax excess risk,
defined with respect to the loss `, domain Θ, and family P of distributions, is then defined by the
best possible maximum excess risk,

Mn(Θ,P, `) := inf
θ̂

sup
P∈P

{
EP
[
LP (θ̂(X1, . . . , Xn))

]
− inf
θ∈Θ

LP (θ)

}
, (7.1.3)

where the infimum is taken over all estimators θ̂ : X n → Θ and the risk LP is implicitly defined in
terms of the loss `. The techniques for providing lower bounds for the minimax risk (7.1.1) or the
excess risk (7.1.3) are essentially identical; we focus for the remainder of this section on techniques
for providing lower bounds on the minimax risk.

7.2 Preliminaries on methods for lower bounds

There are a variety of techniques for providing lower bounds on the minimax risk (7.1.1). Each of
them transforms the maximum risk by lower bounding it via a Bayesian problem (e.g. [88, 101, 104]),
then proving a lower bound on the performance of all possible estimators for the Bayesian problem
(it is often the case that the worst case Bayesian problem is equivalent to the original minimax
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problem [101]). In particular, let {Pv} ⊂ P be a collection of distributions in P indexed by v and
π be any probability mass function over v. Then for any estimator θ̂, the maximum risk has lower
bound

sup
P∈P

EP
[
Φ(ρ(θ̂(Xn

1 ), θ(P )))
]
≥
∑
v

π(v)EPv
[
Φ(ρ(θ̂(Xn

1 ), θ(Pv)))
]
.

While trivial, this lower bound serves as the departure point for each of the subsequent techniques
for lower bounding the minimax risk.

7.2.1 From estimation to testing

A standard first step in proving minimax bounds is to “reduce” the estimation problem to a testing
problem [139, 138, 132]. The idea is to show that estimation risk can be lower bounded by the
probability of error in testing problems, which we can develop tools for. We use two types of testing
problems: one a multiple hypothesis test, the second based on multiple binary hypothesis tests,
though we defer discussion of the second.

Given an index set V of finite cardinality, consider a family of distributions {Pv}v∈V contained
within P. This family induces a collection of parameters {θ(Pv)}v∈V ; we call the family a 2δ-packing
in the ρ-semimetric if

ρ(θ(Pv), θ(Pv′)) ≥ 2δ for all v 6= v′.

We use this family to define the canonical hypothesis testing problem:

• first, nature chooses V according to the uniform distribution over V;

• second, conditioned on the choice V = v, the random sample X = Xn
1 = (X1, . . . , Xn) is

drawn from the n-fold product distribution Pnv .

Given the observed sample X, the goal is to determine the value of the underlying index v. We
refer to any measurable mapping Ψ : X n → V as a test function. Its associated error probability
is P(Ψ(Xn

1 ) 6= V ), where P denotes the joint distribution over the random index V and X. In
particular, if we set P = 1

|V|
∑

v∈V Pv to be the mixture distribution, then the sample X is drawn

(marginally) from P , and our hypothesis testing problem is to determine the randomly chosen index
V given a sample from this mixture P .

With this setup, we obtain the classical reduction from estimation to testing.

Proposition 7.3. The minimax error (7.1.1) has lower bound

Mn(θ(P),Φ ◦ ρ) ≥ Φ(δ) inf
Ψ

P(Ψ(X1, . . . , Xn) 6= V ), (7.2.1)

where the infimum ranges over all testing functions.

Proof To see this result, fix an arbitrary estimator θ̂. Suppressing dependence on X throughout
the derivation, first note that it is clear that for any fixed θ, we have

E[Φ(ρ(θ̂, θ))] ≥ E
[
Φ(δ)1

{
ρ(θ̂, θ) ≥ δ

}]
= Φ(δ)P(ρ(θ̂, θ) ≥ δ),

where the final inequality follows because Φ is non-decreasing. Now, let us define θv = θ(Pv), so
that ρ(θv, θv′) ≥ 2δ for v 6= v′. By defining the testing function

Ψ(θ̂) := argmin
v∈V

{ρ(θ̂, θv)},

132



Stanford Statistics 311/Electrical Engineering 377 John Duchi

θ̂

θv

θv′ 2δ

Figure 7.1. Example of a 2δ-packing of a set. The estimate θ̂ is contained in at most one of the
δ-balls around the points θv.

breaking ties arbitrarily, we have that ρ(θ̂, θv) < δ implies that Ψ(θ̂) = v because of the triangle
inequality and 2δ-separation of the set {θv}v∈V . Indeed, assume that ρ(θ̂, θv) < δ; then for any
v′ 6= v, we have

ρ(θ̂, θv′) ≥ ρ(θv, θv′)− ρ(θ̂, θv) > 2δ − δ = δ.

The test must thus return v as claimed. Equivalently, for v ∈ V, the inequality Ψ(θ̂) 6= v implies
ρ(θ̂, θv) ≥ δ. (See Figure 7.1.) By averaging over V, we find that

sup
P

P(ρ(θ̂, θ(P )) ≥ δ) ≥ 1

|V|
∑
v∈V

P(ρ(θ̂, θ(Pv)) ≥ δ | V = v) ≥ 1

|V|
∑
v∈V

P(Ψ(θ̂) 6= v | V = v).

Taking an infimum over all tests Ψ : X n → V gives inequality (7.2.1).

The remaining challenge is to lower bound the probability of error in the underlying multi-way
hypothesis testing problem, which we do by choosing the separation δ to trade off between the loss
Φ(δ) (large δ increases the loss) and the probability of error (small δ, and hence separation, makes
the hypothesis test harder). Usually, one attempts to choose the largest separation δ that guarantees
a constant probability of error. There are a variety of techniques for this, and we present three:
Le Cam’s method, Fano’s method, and Assouad’s method, including extensions of the latter two
to enhance their applicability. Before continuing, however, we review some inequalities between
divergence measures defined on probabilities, which will be essential for our development, and
concepts related to packing sets (metric entropy, covering numbers, and packing).

7.2.2 Inequalities between divergences and product distributions

We now present a few inequalities, and their consequences when applied to product distributions,
that will be quite useful for proving our lower bounds. The three divergences we relate are the total
variation distance, Kullback-Leibler divergence, and Hellinger distance, all of which are instances
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of f -divergences (recall Section 2.2.3). We first recall the definitions of the three when applied to
distributions P , Q on a set X , which we assume have densities p, q with respect to a base measure
µ. Then we recall the total variation distance (2.2.6) is

‖P −Q‖TV := sup
A⊂X

|P (A)−Q(A)| = 1

2

∫
|p(x)− q(x)|dµ(x),

which is the f -divergence Df (P ||Q) generated by f(t) = 1
2 |t− 1|. The Hellinger distance (2.2.8) is

dhel(P,Q)2 :=

∫
(
√
p(x)−

√
q(x))2dµ(x),

which is the f -divergence Df (P ||Q) generated by f(t) = (
√
t − 1)2. We also recall the Kullback-

Leibler (KL) divergence

Dkl (P ||Q) :=

∫
p(x) log

p(x)

q(x)
dµ(x), (7.2.2)

which is the f -divergence Df (P ||Q) generated by f(t) = t log t. As noted in Section 2.2.3, Propo-
sition 2.10, these divergences have the following relationships.

Proposition (Proposition 2.10, restated). The total variation distance satisfies the following rela-
tionships:

(a) For the Hellinger distance,

1

2
dhel(P,Q)2 ≤ ‖P −Q‖TV ≤ dhel(P,Q)

√
1− dhel(P,Q)2/4.

(b) Pinsker’s inequality: for any distributions P , Q,

‖P −Q‖2TV ≤
1

2
Dkl (P ||Q) .

We now show how Proposition 2.10 is useful, because KL-divergence and Hellinger distance
both are easier to manipulate on product distributions than is total variation. Specifically, consider
the product distributions P = P1 × · · · × Pn and Q = Q1 × · · · × Qn. Then the KL-divergence
satisfies the decoupling equality

Dkl (P ||Q) =

n∑
i=1

Dkl (Pi||Qi) , (7.2.3)

while the Hellinger distance satisfies

dhel(P,Q)2 =

∫ (√
p1(x1) · · · pn(xn)−

√
q1(x1) · · · qn(xn)

)2
dµ(xn1 )

=

∫ ( n∏
i=1

pi(xi) +
n∏
i=1

qi(xi)− 2
√
p1(x1) · · · pn(xn)q1(xn) · · · qn(xn)

)
dµ(xn1 )

= 2− 2

n∏
i=1

∫ √
pi(x)qi(x)dµ(x) = 2− 2

n∏
i=1

(
1− 1

2
dhel(Pi, Qi)

2

)
. (7.2.4)
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In particular, we see that for product distributions Pn and Qn, Proposition 2.10 implies that

‖Pn −Qn‖2TV ≤
1

2
Dkl (Pn||Qn) =

n

2
Dkl (P ||Q)

and
‖Pn −Qn‖TV ≤ dhel(P

n, Qn) ≤
√

2− 2(1− dhel(P,Q)2)n.

As a consequence, if we can guarantee that Dkl (P ||Q) ≤ 1/n or dhel(P,Q) ≤ 1/
√
n, then we

guarantee the strict inequality ‖Pn −Qn‖TV ≤ 1 − c for a fixed constant c > 0, for any n. We
will see how this type of guarantee can be used to prove minimax lower bounds in the following
sections.

7.2.3 Metric entropy and packing numbers

The second part of proving our lower bounds involves the construction of the packing set in Sec-
tion 7.2.1. The size of the space Θ of parameters associated with our estimation problem—and
consequently, how many parameters we can pack into it—is strongly coupled with the difficulty of
estimation. Given a non-empty set Θ with associated (semi)metric ρ, a natural way to measure
the size of the set is via the number of balls of a fixed radius δ > 0 required to cover it.

Definition 7.1 (Covering number). Let Θ be a set with (semi)metric ρ. A δ-cover of the set Θ with
respect to ρ is a set {θ1, . . . , θN} such that for any point θ ∈ Θ, there exists some v ∈ {1, . . . , N}
such that ρ(θ, θv) ≤ δ. The δ-covering number of Θ is

N(δ,Θ, ρ) := inf {N ∈ N : there exists a δ-cover θ1, . . . , θN of Θ} .

The metric entropy [97] of the set Θ is simply the logarithm of its covering number logN(δ,Θ, ρ).
We can define a related measure—more useful for constructing our lower bounds—of size that relates
to the number of disjoint balls of radius δ > 0 that can be placed into the set Θ.

Definition 7.2 (Packing number). A δ-packing of the set Θ with respect to ρ is a set {θ1, . . . , θM}
such that for all distinct v, v′ ∈ {1, . . . ,M}, we have ρ(θv, θv′) ≥ δ. The δ-packing number of Θ is

M(δ,Θ, ρ) := sup {M ∈ N : there exists a δ-packing θ1, . . . , θM of Θ} .

An exercise in proof by contradiction shows that the packing and covering numbers of a set are
in fact closely related:

Lemma 7.4. The packing and covering numbers satisfy the following inequalities:

M(2δ,Θ, ρ) ≤ N(δ,Θ, ρ) ≤M(δ,Θ, ρ).

We leave derivation of this lemma to the reader, noting that it shows that (up to constant factors)
packing and covering numbers have the same scaling in the radius δ. As a simple example, we see
for any interval [a, b] on the real line that in the usual absolute distance metric, N(δ, [a, b], | · |) �
(b− a)/δ.

We can now provide a few more complex examples of packing and covering numbers, presenting
two standard results that will be useful for constructing the packing sets used in our lower bounds
to come. We remark in passing that these constructions are essentially identical to those used
to construct well-separated code-books in communication; in showing our lower bounds, we show
that even if a code-book is well-separated, it may still be hard to estimate. Our first bound shows
that there are (exponentially) large packings of the d-dimensional hypercube of points that are
O(d)-separated in the Hamming metric.
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Lemma 7.5 (Gilbert-Varshamov bound). Let d ≥ 1. There is a subset V of the d-dimensional
hypercube Hd = {−1, 1}d of size |V| ≥ exp(d/8) such that the `1-distance

∥∥v − v′∥∥
1

= 2
d∑
j=1

1
{
vj 6= v′j

}
≥ d

2

for all v 6= v′ with v, v′ ∈ V.

Proof We use the proof of Guntuboyina [77]. Consider a maximal subset V of Hd = {−1, 1}d
satisfying ∥∥v − v′∥∥

1
≥ d/2 for all distinct v, v′ ∈ V. (7.2.5)

That is, the addition of any vector w ∈ Hd, w 6∈ V to V will break the constraint (7.2.5). This
means that if we construct the closed balls B(v, d/2) := {w ∈ Hd : ‖v − w‖1 ≤ d/2}, we must have⋃

v∈V
B(v, d/2) = Hd so |V||B(0, d/2)| =

∑
v∈V
|B(v, d/2)| ≥ 2d. (7.2.6)

We now upper bound the cardinality of B(v, d/2) using the probabilistic method, which will imply
the desired result. Let Si, i = 1, . . . , d, be i.i.d. Bernoulli {0, 1}-valued random variables. Then by
their uniformity, for any v ∈ Hd,

2−d|B(v, d/2)| = P(S1 + S2 + . . .+ Sd ≤ d/4) = P(S1 + S2 + . . .+ Sd ≥ 3d/4)

≤ E [exp(λS1 + . . .+ λSd)] exp(−3λd/4)

for any λ > 0, by Markov’s inequality (or the Chernoff bound). Since E[exp(λS1)] = 1
2(1 + eλ), we

obtain
2−d|B(v, d/2)| ≤ inf

λ≥0

{
2−d(1 + eλ)d exp(−3λd/4)

}
Choosing λ = log 3, we have

|B(v, d/2)| ≤ 4d exp(−(3/4)d log 3) = 3−3d/44d.

Recalling inequality (7.2.6), we have

|V|3−3d/44d ≥ |V||B(v, d/2)| ≥ 2d, or |V| ≥ 33d/4

2d
= exp

(
d

[
3

4
log 3− log 2

])
≥ exp(d/8),

as claimed.

Given the relationships between packing, covering, and size of sets Θ, we would expect there
to be relationships between volume, packing, and covering numbers. This is indeed the case, as we
now demonstrate for arbitrary norm balls in finite dimensions.

Lemma 7.6. Let B denote the unit ‖·‖-ball in Rd. Then(
1

δ

)d
≤ N(δ,B, ‖·‖) ≤

(
1 +

2

δ

)d
.

136



Stanford Statistics 311/Electrical Engineering 377 John Duchi

As a consequence of Lemma 7.6, we see that for any δ < 1, there is a packing V of B such that
‖v − v′‖ ≥ δ for all distinct v, v′ ∈ V and |V| ≥ (1/δ)d, because we know M(δ,B, ‖·‖) ≥ N(δ,B, ‖·‖)
as in Lemma 7.4. In particular, the lemma shows that any norm ball has a 1

2 -packing in its own
norm with cardinality at least 2d. We can also construct exponentially large packings of arbitrary
norm-balls (in finite dimensions) where points are of constant distance apart.
Proof We prove the lemma via a volumetric argument. For the lower bound, note that if the
points v1, . . . , vN are a δ-cover of B, then

Vol(B) ≤
N∑
i=1

Vol(δB + vi) = N Vol(δB) = N Vol(B)δd.

In particular, N ≥ δ−d. For the upper bound on N(δ,B, ‖·‖), let V be a δ-packing of B with
maximal cardinality, so that |V| = M(δ,B, ‖·‖) ≥ N(δ,B, ‖·‖) (recall Lemma 7.4). Notably, the
collection of δ-balls {δB+ vi}Mi=1 cover the ball B (as otherwise, we could put an additional element
in the packing V), and moreover, the balls { δ2B + vi} are all disjoint by definition of a packing.
Consequently, we find that

M

(
δ

2

)d
Vol(B) = M Vol

(
δ

2
B
)
≤ Vol

(
B +

δ

2
B
)

=

(
1 +

δ

2

)d
Vol(B).

Rewriting, we obtain

M(δ,B, ‖·‖) ≤
(

2

δ

)d(
1 +

δ

2

)d Vol(B)

Vol(B)
=

(
1 +

2

δ

)d
,

completing the proof.

7.3 Le Cam’s method

Le Cam’s method, in its simplest form, provides lower bounds on the error in simple binary hypoth-
esis testing testing problems. In this section, we explore this connection, showing the connection
between hypothesis testing and total variation distance, and we then show how this can yield
lower bounds on minimax error (or the optimal Bayes’ risk) for simple—often one-dimensional—
estimation problems.

In the first homework, we considered several representations of the total variation distance,
including a question showing its relation to optimal testing. We begin again with this strand of
thought, recalling the general testing problem discussed in Section 7.2.1. Suppose that we have a
Bayesian hypothesis testing problem where V is chosen with equal probability to be 1 or 2, and
given V = v, the sample X is drawn from the distribution Pv. Denoting by P the joint distribution
of V and X, we have for any test Ψ : X → {1, 2} that the probability of error is

P(Ψ(X) 6= V ) =
1

2
P1(Ψ(X) 6= 1) +

1

2
P2(Ψ(X) 6= 2).

Recalling Section 7.2.1, we note that Proposition 2.17 gives an exact representation of the testing
error using total variation distance. In particular, we have
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Proposition (Proposition 2.17, restated). For any distributions P1 and P2 on X , we have

inf
Ψ
{P1(Ψ(X) 6= 1) + P2(Ψ(X) 6= 2)} = 1− ‖P1 − P2‖TV , (7.3.1)

where the infimum is taken over all tests Ψ : X → {1, 2}.

Returning to the setting in which we receive n i.i.d. observations Xi ∼ P , when V = 1 with
probability 1

2 and 2 with probability 1
2 , we have

inf
Ψ

P (Ψ(X1, . . . , Xn) 6= V ) =
1

2
− 1

2
‖Pn1 − Pn2 ‖TV . (7.3.2)

The representations (7.3.1) and (7.3.2), in conjunction with our reduction of estimation to testing in
Proposition 7.3, imply the following lower bound on minimax risk. For any family P of distributions
for which there exists a pair P1, P2 ∈ P satisfying ρ(θ(P1), θ(P2)) ≥ 2δ, then the minimax risk after
n observations has lower bound

Mn(θ(P),Φ ◦ ρ) ≥ Φ(δ)

[
1

2
− 1

2
‖Pn1 − Pn2 ‖TV

]
. (7.3.3)

The lower bound (7.3.3) suggests the following strategy: we find distributions P1 and P2,
which we choose as a function of δ, that guarantee ‖Pn1 − Pn2 ‖TV ≤

1
2 . In this case, so long as

ρ(θ(P1), θ(P2)) ≥ 2δ, we have the lower bound

Mn(θ(P),Φ ◦ ρ) ≥ Φ(δ)

[
1

2
− 1

2
· 1

4

]
=

1

4
Φ(δ).

We now give an example illustrating this idea.

Example 7.7 (Bernoulli mean estimation): Consider the problem of estimating the mean
θ ∈ [−1, 1] of a {±1}-valued Bernoulli distribution under the squared error loss (θ− θ̂)2, where
Xi ∈ {−1, 1}. In this case, by fixing some δ > 0, we set V = {−1, 1}, and we define Pv so that

Pv(X = 1) =
1 + vδ

2
and Pv(X = −1) =

1− vδ
2

,

whence we see that the mean θ(Pv) = δv. Using the metric ρ(θ, θ′) = |θ−θ′| and loss Φ(δ) = δ2,
we have separation 2δ of θ(P−1) and θ(P1). Thus, via Le Cam’s method (7.3.3), we have that

Mn(Bernoulli([−1, 1]), (·)2) ≥ 1

2
δ2
(
1−

∥∥Pn−1 − Pn1
∥∥

TV

)
.

We would thus like to upper bound ‖Pn−1 − Pn1 ‖TV as a function of the separation δ and
sample size n; here we use Pinsker’s inequality (Proposition 2.10(b)) and the tensorization
identity (7.2.3) that makes KL-divergence so useful. Indeed, we have∥∥Pn−1 − Pn1

∥∥2

TV
≤ 1

2
Dkl

(
Pn−1||Pn1

)
=
n

2
Dkl (P−1||P1) =

n

2
δ log

1 + δ

1− δ
.

Noting that δ log 1+δ
1−δ ≤ 3δ2 for δ ∈ [0, 1/2], we obtain that ‖Pn−1 − Pn1 ‖TV ≤ δ

√
3n/2 for

δ ≤ 1/2. In particular, we can guarantee a high probability of error in the associated hy-
pothesis testing problem (recall inequality (7.3.2)) by taking δ = 1/

√
6n; this guarantees

‖Pn−1 − Pn1 ‖TV ≤ 1
2 . We thus have the minimax lower bound

Mn(Bernoulli([−1, 1]), (·)2) ≥ 1

2
δ2

(
1− 1

2

)
=

1

24n
.

138



Stanford Statistics 311/Electrical Engineering 377 John Duchi

While the factor 1/24 is smaller than necessary, this bound is optimal to within constant
factors; the sample mean (1/n)

∑n
i=1Xi achieves mean-squared error (1− θ2)/n.

As an alternative proof, we may use the Hellinger distance and its associated decoupling
identity (7.2.4). We sketch the idea, ignoring lower order terms when convenient. In this case,
Proposition 2.10(a) implies

‖Pn1 − Pn2 ‖TV ≤ dhel(P
n
1 , P

n
2 ) =

√
2− 2(1− dhel(P1, P2)2)n.

Noting that

dhel(P1, P2)2 =

(√
1 + δ

2
−
√

1− δ
2

)2

= 1− 2

√
1− δ2

4
= 1−

√
1− δ2 ≈ 1

2
δ2,

and noting that (1− δ2) ≈ e−δ2 , we have (up to lower order terms in δ) that ‖Pn1 − Pn2 ‖TV ≤√
2− 2 exp(−δ2n/2). Choosing δ2 = 1/(4n), we have

√
2− 2 exp(−δ2n/2) ≤ 1/2, thus giving

the lower bound

Mn(Bernoulli([−1, 1]), (·)2) “ ≥”
1

2
δ2

(
1− 1

2

)
=

1

16n
,

where the quotations indicate we have been fast and loose in the derivation. 3

This example shows the “usual” rate of convergence in parametric estimation problems, that is,
that we can estimate a parameter θ at a rate (in squared error) scaling as 1/n. The mean estimator
above is, in some sense, the prototypical example of such regular problems. In some “irregular”
scenarios—including estimating the support of a uniform random variable, which we study in the
homework—faster rates are possible.

We also note in passing that their are substantially more complex versions of Le Cam’s method
that can yield sharp results for a wider variety of problems, including some in nonparametric
estimation [101, 139]. For our purposes, the simpler two-point perspective provided in this section
will be sufficient.

JCD Comment: Talk about Euclidean structure with KL space and information geometry a
bit here to suggest the KL approach later.

7.4 Fano’s method

Fano’s method, originally proposed by Has’minskii [80] for providing lower bounds in nonparametric
estimation problems, gives a somewhat more general technique than Le Cam’s method, and it
applies when the packing set V has cardinality larger than two. The method has played a central
role in minimax theory, beginning with the pioneering work of Has’minskii and Ibragimov [80, 88].
More recent work following this initial push continues to the present day (e.g. [27, 139, 138, 28,
118, 77, 37]).

7.4.1 The classical (local) Fano method

We begin by stating Fano’s inequality, which provides a lower bound on the error in a multi-
way hypothesis testing problem. Let V be a random variable taking values in a finite set V
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with cardinality |V| ≥ 2. If we let the function h2(p) = −p log p − (1 − p) log(1 − p) denote the
entropy of the Bernoulli random variable with parameter p, Fano’s inequality (Proposition 2.19
from Chapter 2) takes the following form [e.g. 46, Chapter 2]:

Proposition 7.8 (Fano inequality). For any Markov chain V → X → V̂ , we have

h2(P(V̂ 6= V )) + P(V̂ 6= V ) log(|V| − 1) ≥ H(V | V̂ ). (7.4.1)

Restating the results in Chapter 2, we also have the following convenient rewriting of Fano’s
inequality when V is uniform in V (recall Corollary 2.20).

Corollary 7.9. Assume that V is uniform on V. For any Markov chain V → X → V̂ ,

P(V̂ 6= V ) ≥ 1− I(V ;X) + log 2

log(|V|)
. (7.4.2)

In particular, Corollary 7.9 shows that we have

inf
Ψ

P(Ψ(X) 6= V ) ≥ 1− I(V ;X) + log 2

log |V|
,

where the infimum is taken over all testing procedures Ψ. By combining Corollary 7.9 with the
reduction from estimation to testing in Proposition 7.3, we obtain the following result.

Proposition 7.10. Let {θ(Pv)}v∈V be a 2δ-packing in the ρ-semimetric. Assume that V is uniform
on the set V, and conditional on V = v, we draw a sample X ∼ Pv. Then the minimax risk has
lower bound

M(θ(P); Φ ◦ ρ) ≥ Φ(δ)

(
1− I(V ;X) + log 2

log |V|

)
.

To gain some intuition for Proposition 7.10, we think of the lower bound as a function of the
separation δ > 0. Roughly, as δ ↓ 0, the separation condition between the distributions Pv is
relaxed and we expect the distributions Pv to be closer to one another. In this case—as will be
made more explicity presently—the hypothesis testing problem of distinguishing the Pv becomes
more challenging, and the information I(V ;X) shrinks. Thus, what we roughly attempt to do
is to choose our packing θ(Pv) as a function of δ, and find the largest δ > 0 making the mutual
information small enough that

I(V ;X) + log 2

log |V|
≤ 1

2
. (7.4.3)

In this case, the minimax lower bound is at least Φ(δ)/2. We now explore techniques for achieving
such results.

Mutual information and KL-divergence

Many techniques for upper bounding mutual information rely on its representation as the KL-
divergence between multiple distributions. Indeed, given random variables V and X as in the
preceding sections, if we let PV,X denote their joint distribution and PV and PX their marginals,
then

I(V ;X) = Dkl (PX,V ||PXPV ) ,
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where PXPV denotes the distribution of (X,V ) when the random variables are independent. By
manipulating this definition, we can rewrite it in a way that is a bit more convenient for our
purposes.

Indeed, focusing on our setting of testing, let us assume that V is drawn from a prior distribution
π (this may be a discrete or arbitrary distribution, though for simplicity we focus on the case when
π is discrete). Let Pv denote the distribution of X conditional on V = v, as in Proposition 7.10.
Then marginally, we know that X is drawn from the mixture distribution

P :=
∑
v

π(v)Pv.

With this definition of the mixture distribution, via algebraic manipulations, we have

I(V ;X) =
∑
v

π(v)Dkl

(
Pv||P

)
, (7.4.4)

a representation that plays an important role in our subsequent derivations. To see equality (7.4.4),
let µ be a base measure over X (assume w.l.o.g. that X has density p(· | v) = pv(·) conditional on
V = v), and note that

I(V ;X) =
∑
v

∫
X
p(x | v)π(v) log

p(x | v)∑
v′ p(x | v′)π(v′)

dµ(x) =
∑
v

π(v)

∫
X
p(x | v) log

p(x | v)

p(x)
dµ(x).

Representation (7.4.4) makes it clear that if the distributions of the sample X conditional
on V are all similar, then there is little information content. Returning to the discussion after
Proposition 7.10, we have in this uniform setting that

P =
1

|V|
∑
v∈V

Pv and I(V ;X) =
1

|V|
∑
v∈V

Dkl

(
Pv||P

)
.

The mutual information is small if the typical conditional distribution Pv is difficult to distinguish—
has small KL-divergence—from P .

The local Fano method

The local Fano method is based on a weakening of the mixture representation of mutual informa-
tion (7.4.4), then giving a uniform upper bound on divergences between all pairs of the conditional
distributions Pv and Pv′ . (This method is known in the statistics literature as the “generalied Fano
method,” a poor name, as it is based on a weak upper bound on mutual information.) In particular
(focusing on the case when V is uniform), the convexity of − log implies that

I(V ;X) =
1

|V|
∑
v∈V

Dkl

(
Pv||P

)
≤ 1

|V|2
∑
v,v′

Dkl (Pv||Pv′) . (7.4.5)

In the local Fano method approach, we construct a local packing. This local packing approach
is based on constructing a family of distributions Pv for v ∈ V defining a 2δ-packing (recall Sec-
tion 7.2.1), meaning that ρ(θ(Pv), θ(Pv′)) ≥ 2δ for all v 6= v′, but which additionally satisfy the
uniform upper bound

Dkl (Pv||Pv′) ≤ κ2δ2 for all v, v′ ∈ V, (7.4.6)
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where κ > 0 is a fixed problem-dependent constant. If we have the inequality (7.4.6), then so long
as we can find a local packing V such that

log |V| ≥ 2(κ2δ2 + log 2),

we are guaranteed the testing error condition (7.4.3), and hence the minimax lower bound

M(θ(P),Φ ◦ ρ) ≥ 1

2
Φ(δ).

The difficulty in this approach is constructing the packing set V that allows δ to be chosen to obtain
sharp lower bounds, and we often require careful choices of the packing sets V. (We will see how
to reduce such difficulties in subsequent sections.)

Constructing local packings As mentioned above, the main difficulty in using Fano’s method
is in the construction of so-called “local” packings. In these problems, the idea is to construct a
packing V of a fixed set (in a vector space, say Rd) with constant radius and constant distance.
Then we scale elements of the packing by δ > 0, which leaves the cardinality |V| identical, but
allows us to scale δ in the separation in the packing and the uniform divergence bound (7.4.6). In
particular, Lemmas 7.5 and 7.6 show that we can construct exponentially large packings of certain
sets with balls of a fixed radius.

We now illustrate these techniques via two examples.

Example 7.11 (Normal mean estimation): Consider the d-dimensional normal location
family Nd = {N(θ, σ2Id×d) | θ ∈ Rd}; we wish to estimate the mean θ = θ(P ) of a given
distribution P ∈ Nd in mean-squared error, that is, with loss ‖θ̂ − θ‖22. Let V be a 1/2-packing
of the unit `2-ball with cardinality at least 2d, as guaranteed by Lemma 7.6. (We assume for
simplicity that d ≥ 2.)
Now we construct our local packing. Fix δ > 0, and for each v ∈ V, set θv = δv ∈ Rd. Then
we have

‖θv − θv′‖2 = δ
∥∥v − v′∥∥

2
≥ δ

2

for each distinct pair v, v′ ∈ V, and moreover, we note that ‖θv − θv′‖2 ≤ δ for such pairs as
well. By applying the Fano minimax bound of Proposition 7.10, we see that (given n normal

observations Xi
iid∼ P )

Mn(θ(Nd), ‖·‖22) ≥
(

1

2
· δ

2

)2(
1− I(V ;Xn

1 ) + log 2

log |V|

)
=
δ2

16

(
1− I(V ;Xn

1 ) + log 2

d log 2

)
.

Now note that for any pair v, v′, if Pv is the normal distribution N(θv, σ
2Id×d) we have

Dkl (Pnv ||Pnv′) = n ·Dkl

(
N(δv, σ2Id×d)||N(δv′, σ2Id×d)

)
= n · δ

2

2σ2

∥∥v − v′∥∥2

2
,

as the KL-divergence between two normal distributions with identical covariance is

Dkl (N(θ1,Σ)||N(θ2,Σ)) =
1

2
(θ1 − θ2)>Σ−1(θ1 − θ2)

as in Example 2.7. As ‖v − v′‖2 ≤ 1, we have the KL-divergence bound (7.4.6) with κ2 =
n/2σ2.
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Combining our derivations, we have the minimax lower bound

Mn(θ(Nd), ‖·‖22) ≥ δ2

16

(
1− nδ2/2σ2 + log 2

d log 2

)
. (7.4.7)

Then by taking δ2 = dσ2 log 2/(2n), we see that

1− nδ2/2σ2 + log 2

d log 2
= 1− 1

d
− 1

4
≥ 1

4

by assumption that d ≥ 2, and inequality (7.4.7) implies the minimax lower bound

Mn(θ(Nd), ‖·‖22) ≥ dσ2 log 2

32n
· 1

4
≥ 1

185
· dσ

2

n
.

While the constant 1/185 is not sharp, we do obtain the right scaling in d, n, and the variance
σ2; the sample mean attains the same risk. 3

Example 7.12 (Linear regression): In this example, we show how local packings can give
(up to some constant factors) sharp minimax rates for standard linear regression problems. In
particular, for fixed matrix X ∈ Rn×d, we observe

Y = Xθ + ε,

where ε ∈ Rn consists of independent random variables εi with variance bounded by Var(εi) ≤
σ2, and θ ∈ Rd is allowed to vary over Rd. For the purposes of our lower bound, we may
assume that ε ∼ N(0, σ2In×n). Let P denote the family of such normally distributed linear
regression problems, and assume for simplicity that d ≥ 32.
In this case, we use the Gilbert-Varshamov bound (Lemma 7.5) to construct a local packing
and attain minimax rates. Indeed, let V be a packing of {−1, 1}d such that ‖v − v′‖1 ≥ d/2 for
distinct elements of V, and let |V| ≥ exp(d/8) as guaranteed by the Gilbert-Varshamov bound.
For fixed δ > 0, if we set θv = δv, then we have the packing guarantee for distinct elements
v, v′ that

‖θv − θv′‖22 = δ2
d∑
j=1

(vj − v′j)2 = 4δ2
∥∥v − v′∥∥

1
≥ 2dδ2.

Moreover, we have the upper bound

Dkl

(
N(Xθv, σ

2In×n)||N(Xθv′ , σ
2In×n)

)
=

1

2σ2
‖X(θv − θv′)‖22

≤ δ2

2σ2
γ2

max(X)
∥∥v − v′∥∥2

2
≤ 2d

σ2
γ2

max(X)δ2,

where γmax(X) denotes the maximum singular value of X. Consequently, the bound (7.4.6)
holds with κ2 ≤ 2dγ2

max(X)/σ2, and we have the minimax lower bound

M(θ(P), ‖·‖22) ≥ dδ2

2

(
1− I(V ;Y ) + log 2

log |V|

)
≥ dδ2

2

(
1−

2dγ2max(X)
σ2 δ2 + log 2

d/8

)
.

Now, if we choose

δ2 =
σ2

64γ2
max(X)

, then 1− 8 log 2

d
− 16dγ2

max(X)δ2

d
≥ 1− 1

4
− 1

4
=

1

2
,
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by assumption that d ≥ 32. In particular, we obtain the lower bound

M(θ(P), ‖·‖22) ≥ 1

256

σ2d

γ2
max(X)

=
1

256

σ2d

n

1

γ2
max( 1√

n
X)

,

for a convergence rate (roughly) of σ2d/n after rescaling the singular values of X by 1/
√
n.

This bound is sharp in terms of the dimension, dependence on n, and the variance σ2, but
it does not fully capture the dependence on X, as it depends only on the maximum singular
value. Indeed, in this case, an exact calculation (cf. [104]) shows that the minimax value of
the problem is exactly σ2 tr((X>X)−1). Letting λj(A) be the jth eigenvalue of a matrix A,
we have

σ2 tr((X>X)−1) =
σ2

n
tr((n−1X>X)−1) =

σ2

n

d∑
j=1

1

λj(
1
nX
>X)

≥ σ2d

n
min
j

1

λj(
1
nX
>X)

=
σ2d

n

1

γ2
max( 1√

n
X)

.

Thus, the local Fano method captures most—but not all—of the difficulty of the problem. 3

7.4.2 A distance-based Fano method

While the testing lower bound (7.4.2) is sufficient for proving lower bounds for many estimation
problems, for the sharpest results it sometimes requires a somewhat delicate construction of a well-
separated packing (e.g. [37, 58]). To that end, we also provide extensions of inequalities (7.4.1)
and (7.4.2) that more directly yield bounds on estimation error, allowing more direct and simpler
proofs of a variety of minimax lower bounds (see also reference [56]).

More specifically, suppose that the distance function ρV is defined on V, and we are inter-
ested in bounding the estimation error ρV(V̂ , V ). We begin by providing analogues of the lower
bounds (7.4.1) and (7.4.2) that replace the testing error with the tail probability P(ρV(V̂ , V ) > t).
By Markov’s inequality, such control directly yields bounds on the expectation E[ρV(V̂ , V )]. As
we show in the sequel and in chapters to come, these distance-based Fano inequalities allow more
direct proofs of a variety of minimax bounds without the need for careful construction of packing
sets or metric entropy calculations as in other arguments.

We begin with the distance-based analogue of the usual discrete Fano inequality in Proposi-
tion 7.8. Let V be a random variable supported on a finite set V with cardinality |V| ≥ 2, and let
ρ : V × V → R be a function defined on V × V. In the usual setting, the function ρ is a metric on
the space V, but our theory applies to general functions. For a given scalar t ≥ 0, the maximum
and minimum neighborhood sizes at radius t are given by

Nmax
t := max

v∈V

{
card{v′ ∈ V | ρ(v, v′) ≤ t}

}
and Nmin

t := min
v∈V

{
card{v′ ∈ V | ρ(v, v′) ≤ t}

}
.

(7.4.8)
Defining the error probability Pt = P(ρV(V̂ , V ) > t), we then have the following generalization of
Fano’s inequality:

Proposition 7.13. For any Markov chain V → X → V̂ , we have

h2(Pt) + Pt log
|V| −Nmin

t

Nmax
t

+ logNmax
t ≥ H(V | V̂ ). (7.4.9)
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Before proving the proposition, which we do in Section 7.5.1, it is informative to note that it
reduces to the standard form of Fano’s inequality (7.4.1) in a special case. Suppose that we take
ρV to be the 0-1 metric, meaning that ρV(v, v′) = 0 if v = v′ and 1 otherwise. Setting t = 0 in
Proposition 7.13, we have P0 = P[V̂ 6= V ] and Nmin

0 = Nmax
0 = 1, whence inequality (7.4.9) reduces

to inequality (7.4.1). Other weakenings allow somewhat clearer statements (see Section 7.5.2 for a
proof):

Corollary 7.14. If V is uniform on V and (|V| −Nmin
t ) > Nmax

t , then

P(ρV(V̂ , V ) > t) ≥ 1− I(V ;X) + log 2

log |V|
Nmax
t

. (7.4.10)

Inequality (7.4.10) is the natural analogue of the classical mutual-information based form of
Fano’s inequality (7.4.2), and it provides a qualitatively similar bound. The main difference is
that the usual cardinality |V| is replaced by the ratio |V|/Nmax

t . This quantity serves as a rough
measure of the number of possible “regions” in the space V that are distinguishable—that is, the
number of subsets of V for which ρV(v, v′) > t when v and v′ belong to different regions. While
this construction is similar in spirit to the usual construction of packing sets in the standard
reduction from testing to estimation (cf. Section 7.2.1), our bound allows us to skip the packing set
construction. We can directly compute I(V ;X) where V takes values over the full space, as opposed
to computing the mutual information I(V ′;X) for a random variable V ′ uniformly distributed over
a packing set contained within V. In some cases, the former calculation can be much simpler, as
illustrated in examples and chapters to follow.

We now turn to providing a few consequences of Proposition 7.13 and Corollary 7.14, showing
how they can be used to derive lower bounds on the minimax risk. Proposition 7.13 is a generaliza-
tion of the classical Fano inequality (7.4.1), so it leads naturally to a generalization of the classical
Fano lower bound on minimax risk, which we describe here. This reduction from estimation to
testing is somewhat more general than the classical reductions, since we do not map the original
estimation problem to a strict test, but rather a test that allows errors. Consider as in the standard
reduction of estimation to testing in Section 7.2.1 a family of distributions {Pv}v∈V ⊂ P indexed by
a finite set V. This family induces an associated collection of parameters {θv := θ(Pv)}v∈V . Given
a function ρV : V × V → R and a scalar t, we define the separation δ(t) of this set relative to the
metric ρ on Θ via

δ(t) := sup
{
δ | ρ(θv, θv′) ≥ δ for all v, v′ ∈ V such that ρV(v, v′) > t

}
. (7.4.11)

As a special case, when t = 0 and ρV is the discrete metric, this definition reduces to that of a
packing set: we are guaranteed that ρ(θv, θv′) ≥ δ(0) for all distinct pairs v 6= v′, as in the classical
approach to minimax lower bounds. On the other hand, allowing for t > 0 lends greater flexibility
to the construction, since only certain pairs θv and θv′ are required to be well-separated.

Given a set V and associated separation function (7.4.11), we assume the canonical estimation
setting: nature chooses V ∈ V uniformly at random, and conditioned on this choice V = v, a sample
X is drawn from the distribution Pv. We then have the following corollary of Proposition 7.13,
whose argument is completely identical to that for inequality (7.2.1):

Corollary 7.15. Given V uniformly distributed over V with separation function δ(t), we have

Mn(θ(P),Φ ◦ ρ) ≥ Φ
(δ(t)

2

) [
1− I(X;V ) + log 2

log |V|
Nmax
t

]
for all t. (7.4.12)
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Notably, using the discrete metric ρV(v, v′) = 1 {v 6= v′} and taking t = 0 in the lower bound (7.4.12)
gives the classical Fano lower bound on the minimax risk based on constructing a packing [88, 139,
138]. We now turn to an example illustrating the use of Corollary 7.15 in providing a minimax
lower bound on the performance of regression estimators.

Example: Normal regression model Consider the d-dimensional linear regression model Y =
Xθ + ε, where ε ∈ Rn is i.i.d. N(0, σ2) and X ∈ Rn×d is known, but θ is not. In this case, our
family of distributions is

PX :=
{
Y ∼ N(Xθ, σ2In×n) | θ ∈ Rd

}
=
{
Y = Xθ + ε | ε ∼ N(0, σ2In×n), θ ∈ Rd

}
.

We then obtain the following minimax lower bound on the minimax error in squared `2-norm: there
is a universal (numerical) constant c > 0 such that

Mn(θ(PX , ‖·‖22) ≥ c σ
2d2

‖X‖2Fr

≥ c

γmax(X/
√
n)2
· σ

2d

n
, (7.4.13)

where γmax denotes the maximum singular value. Notably, this inequality is nearly the sharpest
known bound proved via Fano inequality-based methods [37], but our technique is essentially direct
and straightforward.

To see inequality (7.4.13), let the set V = {−1, 1}d be the d-dimensional hypercube, and define
θv = δv for some fixed δ > 0. Then letting ρV be the Hamming metric on V and ρ be the usual
`2-norm, the associated separation function (7.4.11) satisfies δ(t) > max{

√
t, 1}δ. Now, for any

t ≤ dd/3e, the neighborhood size satisfies

Nmax
t =

t∑
τ=0

(
d

τ

)
≤ 2

(
d

t

)
≤ 2

(
de

t

)t
.

Consequently, for t ≤ d/6, the ratio |V|/Nmax
t satisfies

log
|V|
Nmax
t

≥ d log 2− log 2

(
d

t

)
≥ d log 2− d

6
log(6e)− log 2 = d log

2

21/d 6
√

6e
> max

{
d

6
, log 4

}
for d ≥ 12. (The case 2 ≤ d < 12 can be checked directly). In particular, by taking t = bd/6c we
obtain via Corollary 7.15 that

Mn(θ(PX), ‖·‖22) ≥ max{bd/6c , 2}δ2

4

(
1− I(Y ;V ) + log 2

max{d/6, 2 log 2}

)
.

But of course, for V uniform on V, we have E[V V >] = Id×d, and thus for V, V ′ independent and
uniform on V,

I(Y ;V ) ≤ n 1

|V|2
∑
v∈V

∑
v′∈V

Dkl

(
N(Xθv, σ

2In×n)||N(Xθv′ , σ
2In×n)

)
=

δ2

2σ2
E
[∥∥XV −XV ′∥∥2

2

]
=
δ2

σ2
‖X‖2Fr .

Substituting this into the preceding minimax bound, we obtain

Mn(θ(PX), ‖·‖22) ≥ max{bd/6c , 2}δ2

4

(
1−

δ2 ‖X‖2Fr /σ
2 + log 2

max{d/6, 2 log 2}

)
.

Choosing δ2 � dσ2/ ‖X‖2Fr gives the result (7.4.13).
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7.5 Proofs of results

7.5.1 Proof of Proposition 7.13

Our argument for proving the proposition parallels that of the classical Fano inequality by Cover
and Thomas [46]. Letting E be a {0, 1}-valued indicator variable for the event ρ(V̂ , V ) ≤ t, we
compute the entropy H(E, V | V̂ ) in two different ways. On one hand, by the chain rule for entropy,
we have

H(E, V | V̂ ) = H(V | V̂ ) +H(E | V, V̂ )︸ ︷︷ ︸
=0

, (7.5.1)

where the final term vanishes since E is (V, V̂ )-measurable. On the other hand, we also have

H(E, V | V̂ ) = H(E | V̂ ) +H(V | E, V̂ ) ≤ H(E) +H(V | E, V̂ ),

using the fact that conditioning reduces entropy. Applying the definition of conditional entropy
yields

H(V | E, V̂ ) = P(E = 0)H(V | E = 0, V̂ ) + P(E = 1)H(V | E = 1, V̂ ),

and we upper bound each of these terms separately. For the first term, we have

H(V | E = 0, V̂ ) ≤ log(|V| −Nmin
t ),

since conditioned on the event E = 0, the random variable V may take values in a set of size at
most |V| −Nmin

t . For the second, we have

H(V | E = 1, V̂ ) ≤ logNmax
t ,

since conditioned on E = 1, or equivalently on the event that ρ(V̂ , V ) ≤ t, we are guaranteed that
V belongs to a set of cardinality at most Nmax

t .
Combining the pieces and and noting P(E = 0) = Pt, we have proved that

H(E, V | V̂ ) ≤ H(E) + Pt log
(
|V| −Nmin

)
+ (1− Pt) logNmax

t .

Combining this inequality with our earlier equality (7.5.1), we see that

H(V | V̂ ) ≤ H(E) + Pt log(|V| −Nmin
t ) + (1− Pt) logNmax

t .

Since H(E) = h2(Pt), the claim (7.4.9) follows.

7.5.2 Proof of Corollary 7.14

First, by the information-processing inequality [e.g. 46, Chapter 2], we have I(V ; V̂ ) ≤ I(V ;X),
and hence H(V | X) ≤ H(V | V̂ ). Since h2(Pt) ≤ log 2, inequality (7.4.9) implies that

H(V | X)− logNmax
t ≤ H(V | V̂ )− logNmax

t ≤ P(ρ(V̂ , V ) > t) log
|V| −Nmin

t

Nmax
t

+ log 2.

Rearranging the preceding equations yields

P(ρ(V̂ , V ) > t) ≥ H(V | X)− logNmax
t − log 2

log
|V|−Nmin

t
Nmax
t

. (7.5.2)
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Note that his bound holds without any assumptions on the distribution of V .
By definition, we have I(V ;X) = H(V ) − H(V | X). When V is uniform on V, we have

H(V ) = log |V|, and hence H(V | X) = log |V| − I(V ;X). Substituting this relation into the
bound (7.5.2) yields the inequality

P(ρ(V̂ , V ) > t) ≥
log |V|

Nmax
t

log
|V|−Nmin

t
Nmax
t

− I(V ;X) + log 2

log
|V|−Nmin

t
Nmax
t

≥ 1− I(V ;X) + log 2

log |V|
Nmax
t

.

7.6 Exercises

Question 7.1 (A generalized version of Fano’s inequality; cf. Proposition 7.13): Let V and V̂ be
arbitrary sets, and suppose that π is a (prior) probability measure on V, where V is distributed
according to π. Let V → X → V̂ be Markov chain, where V takes values in V and V̂ takes values
in V̂. Let N ⊂ V × V̂ denote a measurable subset of V × V̂ (a collection of neighborhoods), and for
any v̂ ∈ V̂, denote the slice

Nv̂ := {v ∈ V : (v, v̂) ∈ N} . (7.6.1)

That is, N denotes the neighborhoods of points v for which we do not consider a prediction v̂ for
v to be an error, and the slices (7.6.1) index the neighborhoods. Define the “volume” constants

pmax := sup
v̂
π(V ∈ Nv̂) and pmin := inf

v̂
π(V ∈ Nv̂).

Define the error probability Perror = P[(V, V̂ ) 6∈ N ] and entropy h2(p) = −p log p− (1−p) log(1−p).

(a) Prove that for any Markov chain V → X → V̂ , we have

h2(Perror) + Perror log
1− pmin

pmax
≥ log

1

pmax
− I(V ; V̂ ). (7.6.2)

(b) Conclude from inequality (7.6.2) that

P[(V, V̂ ) 6∈ N ] ≥ 1− I(V ;X) + log 2

inf v̂ log 1
π(Nv̂)

.

(c) Now we give a version explicitly using distances. Let V ⊂ Rd and define N = {(v, v′) :
‖v − v′‖ ≤ δ} to be the points within δ of one another. Let Bv denote the ‖·‖-ball of radius 1
centered at v. Conclude that for any prior π on Rd that

P
(
‖V − V̂ ‖2 ≥ δ

)
≥ 1− I(V ;X) + log 2

log 1
supv π(δBv)

.

Question 7.2: In this question, we will show that the minimax rate of estimation for the parameter

of a uniform distribution (in squared error) scales as 1/n2. In particular, assume that Xi
iid∼

Uniform(θ, θ + 1), meaning that Xi have densities p(x) = 1 {x ∈ [θ, θ + 1]}. Let X(1) = mini{Xi}
denote the first order statistic.
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(a) Prove that

E[(X(1) − θ)2] =
2

(n+ 1)(n+ 2)
.

(Hint: the fact that E[Z] =
∫∞

0 P(Z ≥ t)dt for any positive Z may be useful.)

(b) Using Le Cam’s two-point method, show that the minimax rate for estimation of θ ∈ R for the
uniform family U = {Uniform(θ, θ + 1) : θ ∈ R} in squared error has lower bound c/n2, where
c is a numerical constant.

Question 7.3: In this question, we explore estimation under a constraint known as differential
privacy. In one version of private estimation, the collector of data is not trusted, so instead of
seeing true data Xi ∈ X only a disguised version Zi ∈ Z is viewed, where given X = x, we have
Z ∼ Q(· | X = x). We say that this Zi is ε-differentially private if for any subset A ⊂ Z and any
pair x, x′ ∈ X ,

Q(Z ∈ A | X = x)

Q(Z ∈ A | X = x′)
≤ exp(ε). (7.6.3)

The intuition here, from a privacy standpoint, is that no matter what the true data X is, any
points x and x′ are essentially equally likely to have generated the observed signal Z. We explore
a few consequences of differential privacy in this question, including so-called quantitative data
processing inequalities. We assume that ε < 1 for simplicity.

First, we show how differential privacy acts as a contraction on probability distributions. Let
P1 and P2 be arbitrary distributions on X (with densities p1 and p2 w.r.t. a base measure µ) and
define the marginal distributions

Mi(Z ∈ A) :=

∫
X
Q(Z ∈ A | X = x)pi(x)dµ(x), i ∈ {1, 2}.

We will prove that there is a universal (numerical) constant C <∞ such that for any P1, P2,

Dkl (M1||M2) +Dkl (M2||M1) ≤ C(eε − 1)2 ‖P1 − P2‖2TV . (7.6.4)

(a) Show that for any a, b > 0 ∣∣∣log
a

b

∣∣∣ ≤ |a− b|
min{a, b}

.

(b) As discussed in Section 2.2.3 (recall the defining equation (2.2.3) of f -divergences), when con-
sidering Dkl (M1||M2), it is no loss of generality to assume that Z = {1, . . . , k} for some finite
k. Use the shorthands q(z | x) = Q(Z = z | X = x) and mi(z) =

∫
q(z | x)pi(x)dµ(x). Show

that there exists a universal constant c <∞ such that

|m1(z)−m2(z)| ≤ c(eε − 1) inf
x∈X

q(z | x) ‖P1 − P2‖TV .

(c) Combining parts (a) and (b), show inequality (7.6.4).

We note in passing that, except for perhaps the constant factor C, inequality (7.6.4) cannot be
improved generally. This can be shown by letting P1 and P2 be Bernoulli distributions, taking
‖P1 − P2‖TV → 0, and choosing a Bernoulli distribution for Q while taking ε → 0. You do not
need to prove this.
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Question 7.4 (Sign identification in sparse linear regression): In sparse linear regression, we
have n observations Yi = 〈Xi, θ

∗〉+ εi, where Xi ∈ Rd are known (fixed) matrices and the vector θ∗

has a small number k � d of non-zero indices, and εi
iid∼ N(0, σ2). In this problem, we investigate

the problem of sign recovery, that is, identifying the vector of signs sign(θ∗j ) for j = 1, . . . , d, where
sign(0) = 0.

Assume we have the following process: fix a signal threshold θmin > 0. First, a vector S ∈
{−1, 0, 1}d is chosen uniformly at random from the set of vectors Sk := {s ∈ {−1, 0, 1}d : ‖s‖1 = k}.
Then we define vectors θs so that θsj = θminsj , and conditional on S = s, we observe

Y = Xθs + ε, ε ∼ N(0, σ2In×n).

(Here X ∈ Rn×d is a known fixed matrix.)

(a) Use Fano’s inequality to show that for any estimator Ŝ of S, we have

P(Ŝ 6= S) ≥ 1

2
unless n ≥ c

d
k log

(
d
k

)∥∥n−1/2X
∥∥2

Fr

σ2

θ2
min

,

where c is a numerical constant. You may assume that k ≥ 4 or log
(
d
k

)
≥ 4 log 2.

(b) Assume that X ∈ {−1, 1}n×d. Give a lower bound on how large n must be for sign recovery.
Give a one sentence interpretation of σ2/θ2

min.

Question 7.5 (General minimax lower bounds): In this exercise, we outline a more general
approach to minimax risk than that afforded by studying losses applied to parameter error. In
particular, we may instead consider losses of the form

L : Θ× P → R+

where P is a collection of distributions and Θ is a parameter space, where additionally the losses
satisfy the condition

inf
θ∈Θ

L(θ, P ) = 0 for all P ∈ P.

(a) Consider a statistical risk minimization problem, where we have a distribution P on random
variable X ∈ X , loss function f : Θ × X → R, and for P ∈ P define the population risk
FP (θ) := EP [f(θ,X)]. Show that

L(θ, P ) := FP (θ)− inf
θ∈Θ

FP (θ)

satisfies the conditions above.

(b) For distributions P0, P1, define the separation between them (for the loss L) by

sepL(P0, P1; Θ) := sup

{
δ ≥ 0 :

L(θ, P0) ≤ δ implies L(θ, P1) ≥ δ
L(θ, P1) ≤ δ implies L(θ, P0) ≥ δ for any θ ∈ Θ

}
. (7.6.5)

That is, having small loss on P0 implies large loss on P1 and vice versa.
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We say a collection of distributions {Pv}v∈V indexed by V is δ-separated if sepL(Pv, Pv′ ; Θ) ≥ δ.
Show that if {Pv}v∈V is δ-separated, then for any estimator θ̂

1

|V|
∑
v∈V

EPv [L(θ̂, Pv)] ≥ δ inf
v̂
P(v̂ 6= V ),

where P is the joint distribution over the random index V chosen uniformly and then X sampled
X ∼ Pv conditional on V = v.

(c) Show that if P has a δ-separated subset {Pv}v∈V , then

M(P, L) := inf
θ̂

sup
P∈P

EP [L(θ̂, P )] ≥ δ inf
v̂
P(v̂ 6= V ).

Question 7.6 (Optimality in stochastic optimization): In this question, we prove minimax
lower bounds on the convergence rates in stochastic optimization problems based on the size of the
domain over which we optimize and certain Lipschitz conditions of the functions themselves. You
may assume the dimension d in the problems we consider is as large as you wish.

The setting is as follows: we have a domain Θ ⊂ Rd, function f : Θ× X → R, which is convex
in its first argument, and population risks FP (θ) := EP [f(θ,X)], where the expectation is taken
over X ∼ P . For any two functions F0, F1, let θv ∈ argminθ∈Θ Fv(θ), and define the optmization
distance between F0 and F1 by

dopt(F0, F1; Θ) := inf
θ∈Θ

{
F0(θ) + F1(θ)− F0(θ0)− F1(θ1)

}
.

Define also the loss L(θ, P ) := FP (θ)− infθ∈Θ FP (θ).

(a) Show for any δ ≥ 0 that if dopt(F0, F1; Θ) ≥ δ, then sepL(P0, P1; Θ) ≥ δ
2 , where sep is defined

in Eq. (7.6.5).

We consider lower bounds for stochastic optimization problems with appropriately Lipschitz f .

(b) Let the sample space X = {±ej}dj=1 be the signed standard basis vectors, and for θ ∈ Rd,
define

f(θ;x) :=

{
|θj − 1| if x = ej

|θj + 1| if x = −ej .

Let v ∈ {−1, 1}d. For some δ > 0 to be chosen, define the distribution Pv on X by

X =

{
vjej w.p. 1+δ

2d

−vjej w.p. 1−δ
2d .

(Note that ‖X‖0 = 1.) Give an explicit formula for

Fv(θ) := EPv [f(θ,X)].

(c) Show that θv = argminθ Fv(θ) = v and that Fv(θ
v) = 1− δ.

(d) Let V ⊂ {±1}d be a d/2-packing in `1-distance of cardinality at least exp(d/8) (by Gilbert-
Varshamov, Lemma 7.5). Assume that Θ ⊃ [−1, 1]d. Show that dopt(Fv, Fv′) ≥ δ ‖v − v′‖1 for
all distinct v, v′ ∈ V.
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(e) For our loss L(θ, P ) = FP (θ)− infθ∈Θ FP (θ), show that the minimax loss gap

Mn(P,Θ, L) := inf
θ̂n

sup
P∈P

EP [L(θ̂n(Xn
1 ), P )] = inf

θ̂n

sup
P∈P

{
EP [FP (θ̂n(Xn

1 ))− F ?P ]
}

(where F ?P = infθ∈Θ FP (θ) and Xn
1

iid∼ P ) satisfies

Mn(P, L) ≥ c
√
d√
n
,

where c > 0 is a constant.

(f) Show how to modify this construction so that for constants L,R > 0, if Θ ⊃ [−R,R]d, there
are functions f that are L-Lipschitz with respect to the `∞ norm, meaning

|f(θ;x)− f(θ′;x)| ≤ L
∥∥θ − θ′∥∥∞ ,

such that for this domain Θ, loss f (and induced L), and the same family of distributions P
as above,

Mn(P,Θ, L) ≥ cLR
√
d√

n
.

(g) Suppose that instead, we have Θ ⊃ {θ ∈ Rd | ‖θ‖2 ≤ R2}, the `2-ball of radius R2, and allow
f to be L2-Lipschitz with respect to the `2-norm (instead of `∞). Show that

Mn(P,Θ, L) ≥ cL2R2√
n
.

(h) Extra credit: What do these results say about stochastic gradient methods?

Question 7.7 (Optimality in high-dimensional stochastic optimization): To be written.

Question 7.8 (Optimal algorithms for memory access): In a modern CPU, memory is
organized in a hierarchy, so that data upon which computations are being actively performed lies
in a very small memory close to the logic units of the processor for which access is extraordinarily
fast, while data not being actively used lies in slower memory slightly farther from the processor.
(Modern processor memory is generally organized into the registers—a small number of 4- or 8-byte
memory locations on the processor—and level 1, 2, (and sometimes 3 or more) cache, which contain
small amounts of data and increasing access times, and RAM (random access memory).) Moving
data—communicating—between levels of the memory hierarchy is both power intensive and very
slow relative to computation on the data itself, so that in many algorithms the bulk of the time of
the algorithm is in moving data from one place to another to be computed upon. Thus, developing
very fast algorithms for numerical (and other) tasks on modern computers requires careful tracking
of memory access and communication, and careful control of these quantities can often yield orders
of magnitude speed improvements in execution. In this problem, you will prove a lower bound on
the number of communication steps that a variety of numerical-type methods must perform, giving
a concrete (attainable) inequality that allows one to certify optimality of specific algorithms.
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In particular, we consider matrix multiplication, as it is a proxy for a class of cubic algorithms
that are well behaved. Let A,B ∈ Rn×n be matrices, and assume we wish to compute C = AB,
via the simple algorithm that for all i, j sets

Cij =
n∑
l=1

AilBlj .

Computationally, this forces us to repeatedly execute operations of the form

Mem(Cij) = F (Mem(Ail),Mem(Blj),Mem(Cij)),

where F is some function—that may depend on i, j, l—and Mem(·) indicates that we access the
memory associated with the argument. (In our case, we have Cij = Cij + Ail · Blj .) We assume
that executing F requires that Mem(Ail), Mem(Blj), and Mem(Cij) belong to fast memory, and
that each are distinct (stored in a separate place in flow and fast memory). We assume that the
order of the computations does not matter, so we may re-order them in any way. We call Mem(Ail)
(respectively B or C) and operand in our computation. We let M denote the size of fast/local
memory, and we would like to lower bound the number of times we must communicate an operand
into or out of the fast local memory as a function of n, the matrix size, and M , the fast memory
size, when all we may do is re-order the computation being executed. We let NStore denote the
number of times we write something from fast memory out to slow memory and let NLoad the
number of times we load something from slow memory to fast memory. Let N be the total number
of operations we execute (for simple matrix multiplication, we have N = n3, though with sparse
matrices, this can be smaller).

We analyze the procedure by breaking the computation into a number of segments, where each
segment contains precisely M load or store (communication-causing) instructions.

(a) Let Nseg be an upper bound on the number of evaluations with the function F (·) in any given
segment (you will upper bound this in a later part of the problem). Justify that

NStore +NLoad ≥M bN/Nsegc .

(b) Within a segment, all operands involved must be in fast memory at least once to be computed
with. Assume that memory locations Mem(Ail), Mem(Blj), and Mem(Cij) do not overlap.
For any operand involved in a memory operation in one of the segments, the operand (1) was
already in fast memory at the beginning of the segment, (2) was read from slow memory, (3)
is still in fast memory at the end of the segment, or (4) is written to slow memory at the end
of the segment. (There are also operands potentially created during execution that are simply
discarded; we do not bound those.) Justify the following: within a segment, for each type of
operand Mem(Aij), Mem(Bij), or Mem(Cij), there are at most c ·M such operands (i.e. there
are at most cM operands of type Mem(Aij), independent of the others, and so on), where c is
a numerical constant. What value of c can you attain?

(c) Using the result of question 5.1, argue that Nseg ≤ c′
√
M3 for a numerical constant c′. What

value of c′ do you get?

(d) Using the result of part (c), argue that the number of loads and stores satisfies

NStore +NLoad ≥ c′′
N√
M
−M

for a numerical constant c′′. What is your constant?
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Chapter 8

Assouad’s method

Assouad’s method provides a somewhat different technique for proving lower bounds. Instead of
reducing the estimation problem to a multiple hypothesis test or simpler estimation problem, as
with Le Cam’s method and Fano’s method from the preceding lectures, here we transform the
original estimation problem into multiple binary hypothesis testing problems, using the structure
of the problem in an essential way. Assouad’s method applies only problems where the loss we care
about is naturally related to identification of individual points on a hypercube.

8.1 The method

8.1.1 Well-separated problems

To describe the method, we begin by encoding a notion of separation and loss, similar to what we
did in the classical reduction of estimation to testing. For some d ∈ N, let V = {−1, 1}d, and let us
consider a family {Pv}v∈V ⊂ P indexed by the hypercube. We say that the the family Pv induces
a 2δ-Hamming separation for the loss Φ ◦ ρ if there exists a function v̂ : θ(P)→ {−1, 1}d satisfying

Φ(ρ(θ, θ(Pv))) ≥ 2δ

d∑
j=1

1 {[v̂(θ)]j 6= vj} . (8.1.1)

That is, we can take the parameter θ and test the individual indices via v̂.

Example 8.1 (Estimation in `1-error): Suppose we have a family of multivariate Laplace
distributions on Rd—distributions with density proportional to p(x) ∝ exp(−‖x− µ‖1)—and
we wish to estimate the mean in `1-distance. For v ∈ {−1, 1}d and some fixed δ > 0 let pv be
the density

pv(x) =
1

2
exp (−‖x− δv‖1) ,

which has mean θ(Pv) = δv. Under the `1-loss, we have for any θ ∈ Rd that

‖θ − θ(Pv)‖1 =
d∑
j=1

|θj − δvj | ≥ δ
d∑
j=1

1 {sign(θj) 6= vj} ,

so that this family induces a δ-Hamming separation for the `1-loss. 3
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8.1.2 From estimation to multiple binary tests

As in the standard reduction from estimation to testing, we consider the following random process:
nature chooses a vector V ∈ {−1, 1}d uniformly at random, after which the sample X is drawn
from the distribution Pv conditional on V = v. Then, if we let P±j denote the joint distribution
over the random index V and X conditional on the jth coordinate Vj = ±1, we obtain the following
sharper version of Assouad’s lemma [10] (see also the paper [7]); we provide a proof in Section 8.1.3
to follow.

Lemma 8.2. Under the conditions of the previous paragraph, we have

M(θ(P),Φ ◦ ρ) ≥ δ
d∑
j=1

inf
Ψ

[P+j(Ψ(X) 6= +1) + P−j(Ψ(X) 6= −1)] .

While Lemma 8.2 requires conditions on the loss Φ and metric ρ for the separation condi-
tion (8.1.1) to hold, it is sometimes easier to apply than Fano’s method. Moreover, while we will
not address this in class, several researchers [7, 57] have noted that it appears to allow easier ap-
plication in so-called “interactive” settings—those for which the sampling of the Xi may not be
precisely i.i.d. It is closely related to Le Cam’s method, discussed previously, as we see that if we
define P+j = 21−d∑

v:vj=1 Pv (and similarly for −j), Lemma 8.2 is equivalent to

M(θ(P),Φ ◦ ρ) ≥ δ
d∑
j=1

[
1− ‖P+j − P−j‖TV

]
. (8.1.2)

There are standard weakenings of the lower bound (8.1.2) (and Lemma 8.2). We give one such
weakening. First, we note that the total variation is convex, so that if we define Pv,+j to be the
distribution Pv where coordinate j takes the value vj = 1 (and similarly for P − v,−j), we have

P+j =
1

2d

∑
v∈{−1,1}d

Pv,+j and P−j =
1

2d

∑
v∈{−1,1}d

Pv,+j .

Thus, by the triangle inequality, we have

‖P+j − P−j‖TV =

∥∥∥∥ 1

2d

∑
v∈{−1,1}d

Pv,+j − Pv,−j
∥∥∥∥

TV

≤ 1

2d

∑
v∈{−1,1}d

‖Pv,+j − Pv,−j‖TV ≤ max
v,j
‖Pv,+j − Pv,−j‖TV .

Then as long as the loss satisfies the per-coordinate separation (8.1.1), we obtain the following:

M(θ(P),Φ ◦ ρ) ≥ dδ
(

1−max
v,j
‖Pv,+j − Pv,−j‖TV

)
. (8.1.3)

This is the version of Assouad’s lemma most frequently presented.
We also note that by the Cauchy-Schwarz inequality and convexity of the variation-distance,

we have

d∑
j=1

‖P+j − P−j‖TV ≤
√
d

( d∑
j=1

‖P+j − P−j‖2TV

)1/2

≤
√
d

( d∑
j=1

1

2d

∑
v

‖Pv,+j − Pv,−j‖2TV

) 1
2

,
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and consequently we have a not quite so terribly weak version of inequality (8.1.2):

M(θ(P),Φ ◦ ρ) ≥ δd

1−
(

1

d

d∑
j=1

∑
v∈{−1,1}d

‖Pv,+j − Pv,−j‖2TV

) 1
2

 . (8.1.4)

Regardless of whether we use the sharper version (8.1.2) or weakened versions (8.1.3) or (8.1.4),
the technique is essentially the same. We simply seek a setting of the distributions Pv so that the
probability of making a mistake in the hypothesis test of Lemma 8.2 is high enough—say 1/2—
or the variation distance is small enough—such as ‖P+j − P−j‖TV ≤ 1/2 for all j. Once this is
satisfied, we obtain a minimax lower bound of the form

M(θ(P),Φ ◦ ρ) ≥ δ
d∑
j=1

[
1− 1

2

]
=
dδ

2
.

8.1.3 Proof of Lemma 8.2

Fix an (arbitrary) estimator θ̂. By assumption (8.1.1), we have

Φ(ρ(θ, θ(Pv))) ≥ 2δ

d∑
j=1

1 {[v̂(θ)]j 6= vj} .

Taking expectations, we see that

sup
P∈P

EP
[
Φ(ρ(θ̂(X), θ(P )))

]
≥ 1

|V|
∑
v∈V

EPv
[
Φ(ρ(θ̂(X), θv))

]

≥ 1

|V|
∑
v∈V

2δ
d∑
j=1

EPv
[
1
{

[ψ(θ̂)]j 6= vj

}]
as the average is smaller than the maximum of a set and using the separation assumption (8.1.1).
Recalling the definition of the mixtures P±j as the joint distribution of V and X conditional on
Vj = ±1, we swap the summation orders to see that

1

|V|
∑
v∈V

Pv

(
[v̂(θ̂)]j 6= vj

)
=

1

|V|
∑
v:vj=1

Pv

(
[v̂(θ̂)]j 6= vj

)
+

1

|V|
∑

v:vj=−1

Pv

(
[v̂(θ̂)]j 6= vj

)
=

1

2
P+j

(
[v̂(θ̂)]j 6= vj

)
+

1

2
P−j

(
[v̂(θ̂)]j 6= vj

)
.

This gives the statement claimed in the lemma, while taking an infimum over all testing procedures
Ψ : X → {−1,+1} gives the claim (8.1.2).

8.2 Example applications of Assouad’s method

We now provide two example applications of Assouad’s method. The first is a standard finite-
dimensional lower bound, where we provide a lower bound in a normal mean estimation problem.
For the second, we consider estimation in a logistic regression problem, showing a similar lower
bound. In Chapter 9 to follow, we show how to use Assouad’s method to prove strong lower bounds
in a standard nonparametric problem.
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Example 8.3 (Normal mean estimation): For some σ2 > 0 and d ∈ N, we consider estimation
of mean parameter for the normal location family

N :=
{
N(θ, σ2Id×d) : θ ∈ Rd

}
in squared Euclidean distance. We now show how for this family, the sharp Assouad’s method
implies the lower bound

Mn(θ(N ), ‖·‖22) ≥ dσ2

8n
. (8.2.1)

Up to constant factors, this bound is sharp; the sample mean has mean squared error dσ2/n.
We proceed in (essentially) the usual way we have set up. Fix some δ > 0 and define θv = δv,
taking Pv = N(θv, σ

2Id×d) to be the normal distribution with mean θv. In this case, we see that
the hypercube structure is natural, as our loss function decomposes on coordinates: we have
‖θ − θv‖22 ≥ δ2

∑d
j=1 1 {sign(θj) 6= vj}. The family Pv thus induces a δ2-Hamming separation

for the loss ‖·‖22, and by Assouad’s method (8.1.2), we have

Mn(θ(N ), ‖·‖22) ≥ δ2

2

d∑
j=1

[
1−

∥∥Pn+j − Pn−j∥∥TV

]
,

where Pn±j = 21−d∑
v:vj=±1 P

n
v . It remains to provide upper bounds on ‖Pn+j − Pn−j‖TV. By

the convexity of ‖·‖2TV and Pinsker’s inequality, we have∥∥Pn+j − Pn−j∥∥2

TV
≤ max

dham(v,v′)≤1
‖Pnv − Pnv′‖

2
TV ≤

1

2
max

dham(v,v′)≤1
Dkl (Pnv ||Pnv′) .

But of course, for any v and v′ differing in only 1 coordinate,

Dkl (Pnv ||Pnv′) =
n

2σ2
‖θv − θv′‖22 =

2n

σ2
δ2,

giving the minimax lower bound

Mn(θ(N ), ‖·‖22) ≥ 2δ2
d∑
j=1

[
1−

√
2nδ2/σ2

]
.

Choosing δ2 = σ2/8n gives the claimed lower bound (8.2.1). 3

Example 8.4 (Logistic regression): In this example, consider the logistic regression model,
where we have known (fixed) regressors Xi ∈ Rd and an unknown parameter θ ∈ Rd; the goal
is to infer θ after observing a sequence of Yi ∈ {−1, 1}, where for y ∈ {−1, 1} we have

P (Yi = y | Xi, θ) =
1

1 + exp(−yX>i θ)
.

Denote this family by Plog, and for P ∈ Plog, let θ(P ) be the predictor vector θ. We would
like to estimate the vector θ in squared `2 error. As in Example 8.3, if we choose some δ > 0
and for each v ∈ {−1, 1}d, we set θv = δv, then we have the δ2-separation in Hamming metric
‖θ − θv‖22 ≥ δ2

∑d
j=1 1 {sign(θj) 6= vj}. Let Pnv denote the distribution of the n independent
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observations Yi when θ = θv. Then we have by Assouad’s lemma (and the weakening (8.1.4))
that

Mn(θ(Plog), ‖·‖22) ≥ δ2

2

d∑
j=1

[
1−

∥∥Pn+j − Pn−j∥∥TV

]

≥ dδ2

2

[
1−

(
1

d

d∑
j=1

1

2d

∑
v∈{−1,1}d

∥∥Pnv,+j − Pnv,−j∥∥2

TV

) 1
2

]
. (8.2.2)

It remains to bound ‖Pnv,+j − Pnv,−j‖2TV to find our desired lower bound. To that end, use

the shorthands pv(x) = 1/(1 + exp(δx>v)) and let Dkl (p||q) be the binary KL-divergence
between Bernoulli(p) and Bernoulli(q) distributions. Then we have by Pinsker’s inequality
(recall Proposition 2.10) that for any v, v′,

‖Pnv − Pnv′‖TV ≤
1

4
[Dkl (Pnv ||Pnv′)+Dkl (Pnv′ ||Pnv )] =

1

4

n∑
i=1

[Dkl (pv(Xi)||pv′(Xi)) +Dkl (pv′(Xi)||pv(Xi))] .

Let us upper bound the final KL-divergence. Let pa = 1/(1 + ea) and pb = 1/(1 + eb). We
claim that

Dkl (pa||pb) +Dkl (pb||pa) ≤ (a− b)2. (8.2.3)

Deferring the proof of claim (8.2.3), we immediately see that

‖Pnv − Pnv′‖TV ≤
δ2

4

n∑
i=1

(
X>i (v − v′)

)2
.

Now we recall inequality (8.2.2) for motivation, and we see that the preceding display implies

1

2dd

d∑
j=1

∑
v∈{−1,1}d

∥∥Pnv,+j − Pnv,−j∥∥2

TV
≤ δ2

4d

1

2d

∑
v∈{−1,1}d

d∑
j=1

n∑
i=1

(2Xij)
2 =

δ2

d

n∑
i=1

d∑
j=1

X2
ij .

Replacing the final double sum with ‖X‖2Fr, where X is the matrix of the Xi, we have

Mn(θ(Plog), ‖·‖22) ≥ dδ2

2

[
1−

(
δ2

d
‖X‖2Fr

) 1
2

]
.

Setting δ2 = d/4 ‖X‖2Fr, we obtain

Mn(θ(Plog), ‖·‖22) ≥ dδ2

4
=

d2

16 ‖X‖2Fr

=
d

n
· 1

16 1
dn

∑n
i=1 ‖Xi‖22

.

That is, we have a minimax lower bound scaling roughly as d/n for logistic regression, where
“large” Xi (in `2-norm) suggest that we may obtain better performance in estimation. This is
intuitive, as a larger Xi gives a better signal to noise ratio.
We now return to prove the claim (8.2.3). Indeed, by a straightforward expansion, we have

Dkl (pa||pb) +Dkl (pb||pa) = pa log
pa
pb

+ (1− pa) log
1− pa
1− pb

+ pb log
pb
pa

+ (1− pb) log
1− pb
1− pa

= (pa − pb) log
pa
pb

+ (pb − pa) log
1− pa
1− pb

= (pa − pb) log

(
pa

1− pa
1− pb
pb

)
.
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Now note that pa/(1− pa) = e−a and (1− pb)/pb = eb. Thus we obtain

Dkl (pa||pb) +Dkl (pb||pa) =

(
1

1 + ea
− 1

1 + eb

)
log
(
eb−a

)
= (b− a)

(
1

1 + ea
− 1

1 + eb

)
Now assume without loss of generality that b ≥ a. Noting that ex ≥ 1 + x by convexity, we
have

1

1 + ea
− 1

1 + eb
=

eb − ea

(1 + ea)(1 + eb)
≤ eb − ea

eb
= 1− ea−b ≤ 1− (1 + (a− b)) = b− a,

yielding claim (8.2.3). 3

8.3 Exercises

Question 8.1: In this question, we study the question of whether adaptivity can give better
estimation performance for linear regression problems. That is, for i = 1, . . . , n, assume that we
observe variables Yi in the usual linear regression setup,

Yi = 〈Xi, θ〉+ εi, εi
iid∼ N(0, σ2), (8.3.1)

where θ ∈ Rd is unknown. But now, based on observing Y i−1
1 = {Y1, . . . , Yi−1}, we allow an adaptive

choice of the next predictor variables Xi ∈ Rd. Let Lnada(F2) denote the family of linear regression
problems under this adaptive setting (with n observations) where we constrain the Frobenius norm
of the data matrix X> = [X1 · · · Xn], X ∈ Rn×d, to have bound ‖X‖2Fr =

∑n
i=1 ‖Xi‖22 ≤ F2. We

use Assouad’s method to show that the minimax mean-squared error satisfies the following bound:

M(Lnada(F2), ‖·‖22) := inf
θ̂

sup
θ∈Rd

E[‖θ̂ − θ‖22] ≥ dσ2

n
· 1

16 1
dnF

2
. (8.3.2)

Here the infimum is taken over all adaptive procedures satisfying ‖X‖2Fr ≤ F2.
In general, when we choose Xi based on the observations Y i−1

1 , we are taking Xi = Fi(Y
i−1

1 , U i1),
where Ui is a random variable independent of εi and Y i−1

1 and Fi is some function. Justify the
following steps in the proof of inequality (8.3.2):

(i) Assume that nature chooses v ∈ V = {−1, 1}d uniformly at random and, conditionally on v,
let θ = θv. Justify

M(Lnada(F2), ‖·‖22) ≥ inf
θ̂

1

|V|
∑
v∈V

Eθv [‖θ̂ − θv‖22].

Argue it is no loss of generality to assume that the choices for Xi are deterministic based on
the Y i−1

1 . Thus, throughout we assume that Xi = Fi(Y
i−1

1 , ui1), where un1 is a fixed sequence,
or, for simplicity, that Xi is a function of Y i−1

1 .

(ii) Fix δ > 0. Let v ∈ {−1, 1}d, and for each such v, define θv = δv. Also let Pnv denote the joint
distribution (over all adaptively chosen Xi) of the observed variables Y1, . . . , Yn, and define
Pn+j = 1

2d−1

∑
v:vj=1 P

n
v and Pn−j = 1

2d−1

∑
v:vj=−1 P

n
v , so that Pn±j denotes the distribution of

the Yi when v ∈ {−1, 1}d is chosen uniformly at random but conditioned on vj = ±1. Then

inf
θ̂

1

|V|
∑
v∈V

Eθv [‖θ̂ − θv‖22] ≥ δ2

2

d∑
j=1

[
1−

∥∥Pn+j − Pn−j∥∥TV

]
.
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(iii) We have

δ2

2

d∑
j=1

[
1−

∥∥Pn+j − Pn−j∥∥TV

]
≥ δ2d

2

1−
(

1

d

d∑
j=1

∥∥Pn+j − Pn−j∥∥2

TV

) 1
2

 .
(iv) Let P

(i)
+j be the distribution of the random variable Yi conditioned on vj = +1 (with the other

coordinates of v chosen uniformly at random), and let P
(i)
+j (· | y

i−1
1 , xi) denote the distribution

of Yi conditioned on vj = +1, Y i−1
1 = yi−1

1 , and xi. Justify∥∥Pn+j − Pn−j∥∥2

TV
≤ 1

2
Dkl

(
Pn+j ||Pn−j

)
≤ 1

2

n∑
i=1

∫
Dkl

(
P

(i)
+j (· | y

i−1
1 , xi)||P (i)

−j (· | y
i−1
1 , xi)

)
dP i−1

+j (yi−1
1 , xi).

(v) Then we have
d∑
j=1

Dkl

(
P

(i)
+j (· | y

i−1
1 , xi)||P (i)

−j (· | y
i−1
1 , xi)

)
≤ 2δ2

σ2
‖xi‖22 .

(vi) We have
d∑
j=1

∥∥Pn+j − Pn−j∥∥2

TV
≤ δ2

σ2
E[‖X‖2Fr],

where the final expectation is over V drawn uniformly in {−1, 1}d and all Yi, Xi.

(vii) Show how to choose δ appropriately to conclude the minimax bound (8.3.2).

Question 8.2: Suppose under the setting of Question 8.1 that we may no longer be adaptive,
meaning that the matrix X ∈ Rn×d must be chosen ahead of time (without seeing any data).
Assuming n ≥ d, is it possible to attain (within a constant factor) the risk (8.3.2)? If so, give an
example construction, if not, explain why not.
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Chapter 9

Nonparametric regression: minimax
upper and lower bounds

9.1 Introduction

We consider one of the two the most classical non-parametric problems in this example: estimating
a regression function on a subset of the real line (the most classical problem being estimation of a
density). In non-parametric regression, we assume there is an unknown function f : R→ R, where
f belongs to a pre-determined class of functions F ; usually this class is parameterized by some
type of smoothness guarantee. To make our problems concrete, we will assume that the unknown
function f is L-Lipschitz and defined on [0, 1]. Let F denote this class. (For a fuller technical
introduction into nonparametric estimation, see the book by Tsybakov [132].)

Figure 9.1. Observations in a non-parametric regression problem, with function f plotted. (Here
f(x) = sin(2x+ cos2(3x)).)
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In the standard non-parametric regression problem, we obtain observations of the form

Yi = f(Xi) + εi (9.1.1)

where εi are independent, mean zero conditional on Xi, and E[ε2
i ] ≤ σ2. See Figure 9.1 for an

example. We also assume that we fix the locations of the Xi as Xi = i/n ∈ [0, 1], that is, the Xi

are evenly spaced in [0, 1]. Given n observations Yi, we ask two questions: (1) how can we estimate
f? and (2) what are the optimal rates at which it is possible to estimate f?

9.2 Kernel estimates of the function

A natural strategy is to place small “bumps” around the observed points, and estimate f in a
neighborhood of a point x by weighted averages of the Y values for other points near x. We now
formalize a strategy for doing this. Suppose we have a kernel function K : R → R+, which is
continuous, not identically zero, has support suppK = [−1, 1], and satisfies the technical condition

λ0 sup
x
K(x) ≤ inf

|x|≤1/2
K(x), (9.2.1)

where λ0 > 0 (this says the kernel has some width to it). A natural example is the “tent” function
given by Ktent(x) = [1− |x|]+, which satisfies inequality (9.2.1) with λ0 = 1/2. See Fig. 9.2 for two
examples, one the tent function and the other the function

K(x) = 1 {|x| < 1} exp

(
− 1

(x− 1)2

)
exp

(
− 1

(x+ 1)2

)
,

which is infinitely differentiable and supported on [−1, 1].

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 −1.0 −0.5 0.0 0.5 1.0

Figure 9.2: Left: “tent” kernel. Right: infinitely differentiable compactly supported kernel.

Now we consider a natural estimator of the function f based on observations (9.2.1) known as
the Nadaraya-Watson estimator. Fix a bandwidth h, which we will see later smooths the estimated
functions f . For all x, define weights

Wni(x) :=
K
(
Xi−x
h

)
∑n

j=1K
(
Xj−x
h

)
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and define the estimated function

f̂n(x) :=
n∑
i=1

YiWni(x).

The intuition here is that we have a locally weighted regression function, where points Xi in the
neighborhood of x are given higher weight than further points. Using this function f̂n as our
estimator, it is possible to provide a guarantee on the bias and variance of the estimated function
at each point x ∈ [0, 1].

Proposition 9.1. Let the observation model (9.1.1) hold and assume condition (9.2.1). In addition
assume the bandwidth is suitably large that h ≥ 2/n and that the Xi are evenly spaced on [0, 1].
Then for any x ∈ [0, 1], we have

|E[f̂n(x)]− f(x)| ≤ Lh and Var(f̂n(x)) ≤ 2σ2

λ0nh
.

Proof To bound the bias, we note that (conditioning implicitly on Xi)

E[f̂n(x)] =
n∑
i=1

E[YiWni(x)] =
n∑
i=1

E[f(Xi)Wni(x) + εiWni(x)] =
n∑
i=1

f(Xi)Wni(x).

Thus we have that the bias is bounded as∣∣∣E[f̂n(x)]− f(x)
∣∣∣ ≤ n∑

i=1

|f(Xi)− f(x)|Wni(x)

≤
∑

i:|Xi−x|≤h

|f(Xi)− f(x)|Wni(x) ≤ Lh
n∑
i=1

Wni(x) = Lh.

To bound the variance, we claim that

Wni(x) ≤ min

{
2

λ0nh
, 1

}
. (9.2.2)

Indeed, we have that

Wni(x) =
K
(
Xi−x
h

)
∑n

j=1K
(
Xj−x
h

) =
K
(
Xi−x
h

)
∑

j:|Xj−x|≤h/2K
(
Xj−x
h

) ≤ K
(
Xi−x
h

)
λ0 supxK(x)|{j : |Xj − x| ≤ h/2}|

,

and because there are at least nh/2 indices satisfying |Xj − x| ≤ h, we obtain the claim (9.2.2).
Using the claim, we have

Var(f̂n(x)) = E
[( n∑

i=1

(Yi − f(Xi))Wni(x)

)2]
= E

[( n∑
i=1

εiWni(x)

)2]

=
n∑
i=1

Wni(x)2E[ε2
i ] ≤

n∑
i=1

σ2Wni(x)2.
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Noting that Wni(x) ≤ 2/λ0nh and
∑n

i=1Wni(x) = 1, we have

n∑
i=1

σ2Wni(x)2 ≤ σ2 max
i
Wni(x)

n∑
i=1

Wni(x)︸ ︷︷ ︸
=1

≤ σ2 2

λ0nh
,

completing the proof.

With the proposition in place, we can then provide a theorem bounding the worst case pointwise
mean squared error for estimation of a function f ∈ F .

Theorem 9.2. Under the conditions of Proposition 9.1, choose h = (σ2/L2λ0)1/3n−1/3. Then
there exists a universal (numerical) constant C <∞ such that for any f ∈ F ,

sup
x∈[0,1]

E[(f̂n(x)− f(x))2] ≤ C
(
Lσ2

λ0

)2/3

n−
2
3 .

Proof Using Proposition 9.1, we have for any x ∈ [0, 1] that

E[(f̂n(x)− f(x))2] =
(
E[f̂n(x)]− f(x)

)2
+ E[(f̂n(x)− E[f̂n(x)])2] ≤ 2σ2

λ0nh
+ L2h2.

Choosing h to balance the above bias/variance tradeoff, we obtain the thoerem.

By integrating the result in Theorem 9.2 over the interval [0, 1], we immediately obtain the following
corollary.

Corollary 9.3. Under the conditions of Theorem 9.2, if we use the tent kernel Ktent, we have

sup
f∈F

Ef [‖f̂n − f‖22] ≤ C
(
Lσ2

n

)2/3

,

where C is a universal constant.

In Proposition 9.1, it is possible to show that a more clever choice of kernels—ones that are not
always positive—can attain bias E[f̂n(x)] − f(x) = O(hβ) if f has Lipschitz (β − 1)th derivative.
In this case, we immediately obtain that the rate can be improved to

sup
x

E[(f̂n(x)− f(x))2] ≤ Cn−
2β

2β+1 ,

and every additional degree of smoothness gives a corresponding improvement in convergence rate.
We also remark that rates of this form, which are much larger than n−1, are characteristic of non-
parametric problems; essentially, we must adaptively choose a dimension that balances the sample
size, so that rates of 1/n are difficult or impossible to achieve.
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9.3 Minimax lower bounds on estimation with Assouad’s method

Now we can ask whether the results we have given are in fact sharp; do there exist estimators
attaining a faster rate of convergence than our kernel-based (locally weighted) estimator? Using
Assouad’s method, we show that, in fact, these results are all tight. In particular, we prove the
following result on minimax estimation of a regression function f ∈ F , where F consists of 1-
Lipschitz functions defined on [0, 1], in the ‖·‖22 error, that is, ‖f − g‖22 =

∫ 1
0 (f(t)− g(t))2dt.

Theorem 9.4. Let the observation points Xi be spaced evenly on [0, 1], and assume the observation
model (9.1.1). Then there exists a universal constant c > 0 such that

Mn(F , ‖·‖22) := inf
f̂n

sup
f∈F

Ef
[
‖f̂n − f‖22

]
≥ c

(
σ2

n

) 2
3

.

Deferring the proof of the theorem temporarily, we make a few remarks. It is in fact possible to
show—using a completely identical technique—that if Fβ denotes the class of functions with β − 1
derivatives, where the (β − 1)th derivative is Lipschitz, then

Mn(Fβ, ‖·‖22) ≥ c
(
σ2

n

) 2β
2β+1

.

So for any smoothness class, we can never achieve the parametric σ2/n rate, but we can come
arbitrarily close. As another remark, which we do not prove, in dimensions d ≥ 1, the minimax
rate for estimation of functions f with Lipschitz (β − 1)th derivative scales as

Mn(Fβ, ‖·‖22) ≥ c
(
σ2

n

) 2β
2β+d

.

This result can, similarly, be proved using a variant of Assouad’s method; see, for example, the
book of Györfi et al. [79, Chapter 3], which is available online. This is a striking example of the
curse of dimensionality: the penalty for increasing dimension results in worse rates of convergence.
For example, suppose that β = 1. In 1 dimension, we require n ≥ 90 ≈ (.05)−3/2 observations to
achieve accuracy .05 in estimation of f , while we require n ≥ 8000 = (.05)−(2+d)/2 even when the
dimension d = 4, and n ≥ 64 · 106 observations even in 10 dimensions, which is a relatively small
problem. That is, the problem is made exponentially more difficult by dimension increases.

We now turn to proving Theorem 9.4. To establish the result, we show how to construct a family
of problems—indexed by binary vectors v ∈ {−1, 1}k—so that our estimation problem satisfies the
separation (8.1.1), then we show that information based on observing noisy versions of the functions
we have defined is small. We then choose k to make our resulting lower bound as high as possible.

Construction of a separated family of functions To construct our separation in Hamming
metric, as required by Eq. (8.1.1), fix some k ∈ N; we will choose k later. This approach is somewhat
different from our standard approach of using a fixed dimensionality and scaling the separation
directly; in non-parametric problems, we scale the “dimension” itself to adjust the difficulty of the
estimation problem. Define the function g(x) = [1/2− |x− 1/2|]+, so that g is 1-Lipschitz and is

0 outside of the interval [0, 1]. Then for any v ∈ {−1, 1}k, define the “bump” functions

gj(x) :=
1

k
g

(
k

(
x− j − 1

k

))
and fv(x) :=

k∑
j=1

vjgj(x),
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which we see is 1-Lipschitz. Now, consider any function f : [0, 1]→ R, and let Ej be shorthand for
the intervals Ej = [(j − 1)/k, j/k] for j = 1, . . . , k. We must find a mapping identifying a function
f with points in the hypercube {−1, 1}k. To that end, we may define a vector v̂(f) ∈ {−1, 1}k by

v̂j(f) = argmin
s∈{−1,1}

∫
Ej

(f(t)− sgj(t))2 dt.

We claim that for any function f ,(∫
Ej

(f(t)− fv(t))2dt

) 1
2

≥ 1 {v̂j(f) 6= vj}
(∫

Ej

fv(t)
2dt

) 1
2

. (9.3.1)

Indeed, on the set Ej , we have vjgj(t) = fv(t), and thus
∫
Ej
gj(t)

2dt =
∫
Ej
fv(t)

2dt. Then by the

triangle inequality, we have

2 · 1 {v̂j(f) 6= vj}
(∫

Ej

gj(t)
2dt

) 1
2

=

(∫
Ej

((v̂j(f)− vj)gj(t))2 dt

) 1
2

≤
(∫

Ej

(f(t)− vjgj(t))2 dt

) 1
2

+

(∫
Ej

(f(t)− v̂j(f)gj(t))
2 dt

) 1
2

≤ 2

(∫
Ej

(f(t)− fv(t))2 dt

) 1
2

,

by definition of the sign v̂j(f).
With the definition of v̂ and inequality (9.3.1), we see that for any vector v ∈ {−1, 1}k, we have

‖f − fv‖22 =
k∑
j=1

∫
Ej

(f(t)− fv(t))2 dt ≥
k∑
j=1

1 {v̂j(f) 6= vj}
∫
Ej

fv(t)
2dt.

In particular, we know that∫
Ej

fv(t)
2dt =

1

k2

∫ 1/k

0
g(kt)2dt =

1

k3

∫ 1

0
g(u)2du ≥ c

k3
,

where c is a numerical constant. In particular, we have the desired separation

‖f − fv‖22 ≥
c

k3

k∑
j=1

1 {v̂j(f) 6= vj} . (9.3.2)

Bounding the binary testing error Let Pnv denote the distribution of the n observations
Yi = fv(Xi) + εi when fv is the true regression function. Then inequality (9.3.2) implies via
Assouad’s lemma that

Mn(F , ‖·‖22) ≥ c

k3

k∑
j=1

[
1−

∥∥Pn+j − Pn−j∥∥TV

]
. (9.3.3)

Now, we use convexity and Pinsker’s inequality to note that∥∥Pn+j − Pn−j∥∥2

TV
≤ max

v

∥∥Pnv,+j − Pnv,−j∥∥2

TV
≤ max

v

1

2
Dkl

(
Pnv,+j ||Pnv,−j

)
.
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For any two functions fv and fv′ , we have that the observations Yi are independent and normal
with means fv(Xi) or fv′(Xi), respectively. Thus

Dkl (Pnv ||Pnv′) =

n∑
i=1

Dkl

(
N(fv(Xi), σ

2)||N(fv′(Xi), σ
2)
)

=

n∑
i=1

1

2σ2
(fv(Xi)− fv′(Xi))

2. (9.3.4)

Now we must show that the expression (9.3.4) scales more slowly than n, which we will see must
be the case as whenever dham(v, v′) ≤ 1. Intuitively, most of the observations have the same
distribution by our construction of the fv as bump functions; let us make this rigorous.

We may assume without loss of generality that vj = v′j for j > 1. As the Xi = i/n, we thus
have that only Xi for i near 1 can have non-zero values in the tensorization (9.3.4). In particular,

fv(i/n) = fv′(i/n) for all i s.t.
i

n
≥ 2

k
, i.e. i ≥ 2n

k
.

Rewriting expression (9.3.4), then, and noting that fv(x) ∈ [−1/k, 1/k] for all x by construction,
we have

n∑
i=1

1

2σ2
(fv(Xi)− fv′(Xi))

2 ≤
2n/k∑
i=1

1

2σ2
(fv(Xi)− fv′(Xi))

2 ≤ 1

2σ2

2n

k

1

k2
=

n

k3σ2
.

Combining this with inequality (9.3.4) and the minimax bound (9.3.3), we obtain

∥∥Pn+j − Pn−j∥∥TV
≤
√

n

2k3σ2
,

so

Mn(F , ‖·‖22) ≥ c

k3

k∑
j=1

[
1−

√
n

2k3σ2

]
.

Choosing k for optimal tradeoffs Now we simply choose k; in particular, setting

k =

⌈( n

2σ2

)1/3
⌉

then 1−
√

n

2k3σ2
≥ 1−

√
1/4 =

1

2
,

and we arrive at

Mn(F , ‖·‖22) ≥ c

k3

k∑
j=1

1

2
=

c

2k2
≥ c′

(
σ2

n

)2/3

,

where c′ > 0 is a universal constant. Theorem 9.4 is proved.
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Chapter 10

Global Fano Method

In this chapter, we extend the techniques of Chapter 7.4 on Fano’s method (the local Fano method)
to a more global construction. In particular, we show that, rather than constructing a local packing,
choosing a scaling δ > 0, and then optimizing over this δ, it is actually, in many cases, possible to
prove lower bounds on minimax error directly using packing and covering numbers (metric entropy
and packing entropy). The material in this chapter is based on a paper of Yang and Barron [138].

10.1 A mutual information bound based on metric entropy

To begin, we recall the classical Fano inequality, which says that for any Markov chain V → X → V̂ ,
where V is uniform on the finite set V, we have

P(V̂ 6= V ) ≥ 1− I(V ;X) + log 2

log(|V|)
.

(Recall Corollary 7.9.) Thus, there are two ingredients in proving lower bounds on the error in a
hypothesis test: upper bounding the mutual information and lower bounding the size |V|. Here,
we state a proposition doing the former.

Before stating our result, we require a bit of notation. First, we assume that V is drawn from a
distribution µ, and conditional on V = v, assume the sample X ∼ Pv. Then a standard calculation
(or simply the definition of mutual information; recall equation (7.4.4)) gives that

I(V ;X) =

∫
Dkl

(
Pv||P

)
dµ(v), where P =

∫
Pvdµ(v). (10.1.1)

Now, we show how to connect this mutual information quantity to a covering number of a set of
distributions.

Assume that for all v, we have Pv ∈ P, where P is a collection of distributions. In analogy
with Definition 7.1, we say that the collection of distributions {Qi}Ni=1 form an ε-cover of P in
KL-divergence if for all P ∈ P, there exists some i such that Dkl (P ||Qi) ≤ ε2. With this, we may
define the KL-covering number of the set P as

Nkl (ε,P) := inf

{
N ∈ N | ∃ Qi, i = 1, . . . , N, sup

P∈P
min
i
Dkl (P ||Qi) ≤ ε2

}
, (10.1.2)

where Nkl (ε,P) = +∞ if no such cover exists. With definition (10.1.2) in place, we have the
following proposition.
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Proposition 10.1. Under conditions of the preceding paragraphs, we have

I(V ;X) ≤ inf
ε>0

{
ε2 + logNkl (ε,P)

}
. (10.1.3)

Proof First, we claim that∫
Dkl

(
Pv||P

)
dµ(v) ≤

∫
Dkl (Pv||Q) dµ(v) (10.1.4)

for any distribution Q. Indeed, briefly, we have∫
Dkl

(
Pv||P

)
dµ(v) =

∫
V

∫
X
dPv log

dPv

dP
dµ(v) =

∫
V

∫
X
dPv

[
log

dPv
Q

+ log
dQ

dP

]
dµ(v)

=

∫
V
Dkl (Pv||Q) dµ(v) +

∫
X

∫
V
dµ(v)dPv︸ ︷︷ ︸

=dP

log
dQ

dP

=

∫
Dkl (Pv||Q) dµ(v)−Dkl

(
P ||Q

)
≤
∫
Dkl (Pv||Q) dµ(v),

so that inequality (10.1.4) holds. By carefully choosing the distributionQ in the upper bound (10.1.4),
we obtain the proposition.

Now, assume that the distributions Qi, i = 1, . . . , N form an ε2-cover of the family P, meaning
that

min
i∈[N ]

Dkl (P ||Qi) ≤ ε2 for all P ∈ P.

Let pv and qi denote the densities of Pv and Qi with respect to some fixed base measure on X (the
choice of based measure does not matter). Then definining the distribution Q = (1/N)

∑N
i=1Qi,

we obtain for any v that in expectation over X ∼ Pv,

Dkl (Pv||Q) = EPv
[
log

pv(X)

q(X)

]
= EPv

[
log

pv(X)

N−1
∑n

i=1 qi(X)

]
= logN + EPv

[
log

pv(X)∑N
i=1 qi(X)

]
≤ logN + EPv

[
log

pv(X)

maxi qi(X)

]
≤ logN + min

i
EPv

[
log

pv(X)

qi(X)

]
= logN + min

i
Dkl (Pv||Qi) .

By our assumption that the Qi form a cover, this gives the desired result, as ε ≥ 0 was arbitrary,
as was our choice of the cover.

By a completely parallel proof, we also immediately obtain the following corollary.

Corollary 10.2. Assume that X1, . . . , Xn are drawn i.i.d. from Pv conditional on V = v. Let
Nkl (ε,P) denote the KL-covering number of a collection P containing the distributions (over a
single observation) Pv for all v ∈ V. Then

I(V ;X1, . . . , Xn) ≤ inf
ε≥0

{
nε2 + logNkl (ε,P)

}
.
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With Corollary 10.2 and Proposition 10.1 in place, we thus see that the global covering numbers
in KL-divergence govern the behavior of information.

We remark in passing that the quantity (10.1.3), and its i.i.d. analogue in Corollary 10.2, is
known as the index of resolvability, and it controls estimation rates and redundancy of coding
schemes for unknown distributions in a variety of scenarios; see, for example, Barron [18] and
Barron and Cover [19]. It is also similar to notions of complexity in Dudley’s entropy integral
(cf. Dudley [60]) in empirical process theory, where the fluctuations of an empirical process are
governed by a tradeoff between covering number and approximation of individual terms in the
process.

10.2 Minimax bounds using global packings

There is now a four step process to proving minimax lower bounds using the global Fano method.
Our starting point is to recall the Fano minimax lower bound in Proposition 7.10, which begins
with the construction of a set of points {θ(Pv)}v∈V that form a 2δ-packing of a set Θ in some
ρ-semimetric. With this inequality in mind, we perform the following four steps:

(i) Bound the packing entropy. Give a lower bound on the packing number of the set Θ with
2δ-separation (call this lower bound M(δ)).

(ii) Bound the metric entropy. Give an upper bound on the KL-metric entropy of the class P of
distributions containing all the distributions Pv, that is, an upper bound on logNkl (ε,P).

(iii) Find the critical radius. Noting as in Corollary 10.2 that with n i.i.d. observations, we have

I(V ;X1, . . . , Xn) ≤ inf
ε≥0

{
nε2 + logNkl (ε,P)

}
,

we now balance the information I(V ;Xn
1 ) and the packing entropy logM(δ). To that end, we

choose εn and δ > 0 at the critical radius, defined as follows: choose the any εn such that

nε2n ≥ logNkl (εn,P) ,

and choose the largest δn > 0 such that

logM(δn) ≥ 4nε2n + 2 log 2 ≥ 2Nkl (εn,P) + 2nε2n + 2 log 2 ≥ 2 (I(V ;Xn
1 ) + log 2) .

(We could have chosen the εn attaining the infimum in the mutual information, but this way
we need only an upper bound on logNkl (ε,P).)

(iv) Apply the Fano minimax bound. Having chosen δn and εn as above, we immediately obtain
that for the Markov chain V → Xn

1 → V̂ ,

P(V 6= V̂ ) ≥ 1− I(V ;X1, . . . , Xn) + log 2

logM(δn)
≥ 1− 1

2
=

1

2
,

and thus, applying the Fano minimax bound in Proposition 7.10, we obtain

Mn(θ(P); Φ ◦ ρ) ≥ 1

2
Φ(δn).
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10.3 Example: non-parametric regression

In this section, we flesh out the outline in the prequel to show how to obtain a minimax lower
bound for a non-parametric regression problem directly with packing and metric entropies. In
this example, we sketch the result, leaving explicit constant calculations to the dedicated reader.
Nonetheless, we recover an analogue of Theorem 9.4 on minimax risks for estimation of 1-Lipschitz
functions on [0, 1].

We use the standard non-parametric regression setting, where our observations Yi follow the
independent noise model (9.1.1), that is, Yi = f(Xi) + εi. Letting

F := {f : [0, 1]→ R, f(0) = 0, f is Lipschitz}

be the family of 1-Lipschitz functions with f(0) = 0, we have

Proposition 10.3. There exists a universal constant c > 0 such that

Mn(F , ‖·‖∞) := inf
f̂n

sup
f∈F

Ef
[
‖f̂n − f‖∞

]
≥ c

(
σ2

n

)1/3

,

where f̂n is constructed based on the n independent observations f(Xi) + εi.

The rate in Proposition 10.3 is sharp to within factors logarithmic in n; a more precise analysis of
the upper and lower bounds on the minimax rate yields

Mn(F , ‖·‖∞) := inf
f̂n

sup
f∈F

Ef
[
‖f̂n − f‖∞

]
�
(
σ2 log n

n

)1/3

.

See, for example, Tsybakov [132] for a proof of this fact.
Proof Our first step is to note that the covering and packing numbers of the set F in the `∞
metric satisfy

logN(δ,F , ‖·‖∞) � logM(δ,F , ‖·‖∞) � 1

δ
. (10.3.1)

To see this, fix some δ ∈ (0, 1) and assume for simplicity that 1/δ is an integer. Define the sets

Ej = [δ(j − 1), δj), and for each v ∈ {−1, 1}1/δ define hv(x) =
∑1/δ

j=1 vj1 {x ∈ Ej}. Then define

the function fv(t) =
∫ t

0 hv(t)dt, which increases or decreases linearly on each interval of width δ in

[0, 1]. Then these fv form a 2δ-packing and a 2δ-cover of F , and there are 21/δ such fv. Thus the
asymptotic approximation (10.3.1) holds. TODO: Draw a picture

Now, if for some fixed x ∈ [0, 1] and f, g ∈ F we define Pf and Pg to be the distributions of the
observations f(x) + ε or g(x) + ε, we have that

Dkl (Pf ||Pg) =
1

2σ2
(f(Xi)− g(Xi))

2 ≤
‖f − g‖2∞

2σ2
,

and if Pnf is the distribution of the n observations f(Xi) + εi, i = 1, . . . , n, we also have

Dkl

(
Pnf ||Png

)
=

n∑
i=1

1

2σ2
(f(Xi)− g(Xi))

2 ≤ n

2σ2
‖f − g‖2∞ .

171



Stanford Statistics 311/Electrical Engineering 377 John Duchi

In particular, this implies the upper bound

logNkl (ε,P) .
1

σε

on the KL-metric entropy of the class P = {Pf : f ∈ F}, as logN(δ,F , ‖·‖∞) � δ−1. Thus we have
completed steps (i) and (ii) in our program above.

It remains to choose the critical radius in step (iii), but this is now relatively straightforward:
by choosing εn � (1/σn)1/3, and whence nε2n � (n/σ2)1/3, we find that taking δ � (σ2/n)1/3 is
sufficient to ensure that logN(δ,F , ‖·‖∞) & δ−1 ≥ 4nε2n + 2 log 2. Thus we have

Mn(F , ‖·‖∞) & δn ·
1

2
&

(
σ2

n

)1/3

as desired.
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Chapter 11

Constrained risk inequalities

In this chapter, we revisit our minimax bounds in the context of what we term constrained risk
inequalities. While the minimax risk of previous chapters provides a first approach for providing
fundamental limits on procedures, its reliance on the collection of all measurable functions as
its class of potential estimators is somewhat limiting. Indeed, in most statistical and statistical
learning problems, we have some type of constraint on our procedures: they must be efficiently
computable, they must work with data arriving in a sequential stream, they must be robust, or they
must protect the privacy of the providers of the data. In modern computational hardware, where
physical limits prevent increasing clock speeds, we may like to use as much parallel computation
as possible, though there are potential tradeoffs between “sequentialness” of procedures and their
parallelism.

With this as context, we replace the minimax risk of Chapter 7.1 with the constrained mini-
max risk, which, given a collection C of possible procedures—private, communication limited, or
otherwise—defines

M(θ(P),Φ ◦ ρ, C) := inf
θ̂∈C

sup
P∈P

EP
[
Φ
(
ρ(θ̂(X), θ(P ))

)]
, (11.0.1)

where as in the original defining equation (7.1.1) of the minimax risk, Φ : R+ → R+ is a nondecreas-
ing loss, ρ is a semimetric on the space Θ, and the expectation is taken over the sample X ∼ P .
In this chapter, we study the quantity (11.0.1) via a few examples, highlighting possibilities and
challenges with its analysis. We will focus on a restricted class of examples—many procedures do
not fall in the framework we consider—that assumes, given a sample X1, . . . , Xn, we can represent
the class C of estimators under consideration as acting on some view or processed version Zi of Xi.
In particular, this allows us to study communication complexity, memory complexity, and certain
private estimators.

11.1 Strong data processing inequalities

The starting point for our results is to consider strong data processing inequalities, which improve
upon the standard data processing inequality for divergences, as in Chapter 2.1.3, to provide more
quantitative versions. The initial setting is straightforward: we have distributions P0 and P1 on a
space X , and a channel (Markov kernel) Q from X to Z. When Q is contractive on the space of
distributions, we have a strong data processing inequality.
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Definition 11.1 (Strong data processing inequalities). Let f : R+ → R ∪ {+∞} be convex and
satisfy f(1) = 0. For distributions P0, P1 on X and a channel Q from X to a space Z, define
the marginal distribution Mv(A) :=

∫
Q(A | x)dPv(x). The channel Q satisfies a strong data

processing inequality with constant α ≤ 1 for the given f -divergence

Df (M0||M1) ≤ αDf (P0||P1)

for any choice of P0, P1 on X . For any such f , we define the f -strong data processing constant

αf (Q) := sup
P0 6=P1

Df (M0||M1)

Df (P0||P1)
.

These types of inequalities are common throughout information and probability theory. Perhaps
their most frequent use is in the development conditions for the fast mixing of Markov chains.
Indeed, suppose the Markov kernel Q satisfies a strong data processing inequality with constant α
with respect to variation distance. If π denotes the stationary distribution of the Markov kernel Q
and we use the operator ◦ to denote one step of the Markov kernel,1

Q ◦ P :=

∫
Q(· | x)dP (x),

then for any initial distribution π0 on the space X we have

‖Q ◦ · · · ◦Q︸ ︷︷ ︸
k times

π0 − π‖TV ≤ αk ‖π0 − π‖TV

because Q ◦ π = π by definition of the stationary distribution. Thus, the Markov chain enjoys
geometric mixing.

To that end, a common quantity of interest is the Dobrushin coefficient, which immediately
implies mixing rates.

Definition 11.2. The Dobrushin coefficient of a channel or Markov kernel Q is

αTV(Q) := sup
x,y
‖Q(· | x)−Q(· | y)‖TV .

The Dobrushin coefficient satisfies many properties, some of which we discuss in the exercises and
others of which we enumerate here. The first is that

Proposition 11.1. The Dobrushin coefficient is the variation distances strong data processing
constant, that is,

αTV(Q) = sup
P0 6=P1

‖Q ◦ P0 −Q ◦ P1‖TV

‖P0 − P1‖TV

.

A more substantial fact is that the Dobrushin coefficient upper bounds every other strong data
processing constant.

Theorem 11.2. Let f : R+ → R ∪ {∞} satisfy f(1) = 0. Then for any channel Q,

αTV(Q) ≥ αf (Q).
1The standard notation is usually to right-multiply the measure P , so that the marginal distribution M = PQ

means M(A) =
∫
Q(A | x)dP (x); we find our notation more intuitive.
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The theorem is roughly a consequence of a few facts. First, Proposition 11.1 holds. Second, without
loss of generality we may assume that f ≥ 0; indeed, replace f(t) with h(t) = f(t) − f ′(1)t for
any f ′(1) ∈ ∂f(1), we have h ≥ 0 as 0 ∈ ∂h(1) and Dh = Df . Third, any f ≥ 0 with 0 ∈ ∂f(1)

can be approximated arbitrarily accurately with functions of the form h(t) =
∑k

i=1 ai [t− ci]+ +∑k
i=1 bi [di − t]+, where ci ≥ 1 and di ≤ 1. For such h, an argument shows that

Dh(Q ◦ P0||Q ◦ P1) ≤ αTV(Q)Dh(P0||P1),

which follows from the similarities between variation distance, with f(t) = 1
2 |t|, and the positive

part functions [·]+. For a formal proof, see the papers of Del Moral et al. [53] and Cohen et al. [43].
In our context, that of (constrained) minimax lower bounds, such data processing inequalities

immediately imply somewhat sharper lower bounds than the (unconstrained) applications in previ-
ous chapters. Indeed, let us revisit the situation present in the local Fano bound, where we the KL
divergence has a Euclidean structure as in the bound (7.4.6), meaning that Dkl (P0||P1) ≤ κ2δ2 when
our parameters of interest θv = θ(Pv) satisfy ρ(θ0, θ1) ≤ δ. We assume that the constraints C impose
that the data Xi is passed through a channel Q with KL-data processing constant αKL(Q) ≤ 1. In
this case, in the basic Le Cam’s method (7.3.2), an application of Pinsker’s inequality yields that
whenever ρ(θ0, θ1) ≥ 2δ then

Mn(θ(P),Φ ◦ ρ, C) ≥ Φ(δ)

2

[
1−

√
n

2
Dkl (M0||M1)

]
≥ Φ(δ)

2

[
1−

√
nκ2αKL(Q)δ2/2

]
,

and the “standard” choice of δ to make the probability of error constant results in δ2 = (2nκ2αKL(Q))−1,
or the minimax lower bound

Mn(θ(P),Φ ◦ ρ, C) ≥ 1

4
Φ

(
1√

2nκ2αKL(Q)

)
,

which suggests an effective sample size degradation of n 7→ nαKL(Q). Similarly, in the local Fano
method in Chapter 7.4.1, we see identical behavior and an effective sample size degradation of
n 7→ nαKL(Q), that is, if without constraints a sample size of n(ε) is required to achieve some
desired accuracy ε, with the constraint a sample size of at least n(ε)/αKL(Q) is necessary.

11.2 Local privacy

Local privacy via strong data processing

(a) Suppose Q is an ε-differentially private channel. We also allow sequential interactivity, meaning
that the ith private variable Zi may depend on both Xi and Zi−1

1 . Under local differential
privacy, we have

Q(Zi ∈ A | Xi = x, zi−1
1 )

Q(Zi ∈ A | Xi = x′, zi−1
1 )

≤ eε.

(b) Have contraction inequality:

Theorem 11.3. If Q is ε-differentially private, then

Dkl (M0||M1) +Dkl (M1||M0) ≤ 4(eε − 1)2 ‖P0 − P1‖2TV .
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(c) In the case we have interactive (multi-sample) setting, i.e. Zi ∼ Q(· | Xi, Z
i−1
1 ) and define

Mn
v =

∫
Q(· | xn1 )dPv(x

n
1 ) to be the marginal distribution over all the Zn1 , then

Corollary 11.4. Assume that each channel Q(· | Xi, Z
i−1
1 ) is εi-differentially private. Then

Dkl (Mn
0 ||Mn

1 ) ≤ 4

n∑
i=1

(eεi − 1)2 ‖P0 − P1‖2TV .

(d) Examples:

11.3 Communication complexity

A second major application of data processing inequalities, especially in the context of statistical
estimation, is in communication complexity. In this context, we limit the amount of information—or
perhaps bits—that a procedure may send about individual examples, and then ask to what extent
this constrains the estimator. This has applications in situations in which the memory available to
an estimator is limited, in situations with privacy—as we shall see—and of course, when we restrict
the number of bits different machines storing distributed data may send.

The setting we consider is roughly as follows: m machines, or individuals, have data Xi, i =
1, . . . ,m. Communication proceeds in rounds t = 1, 2, . . . , T , where in each round t machine i sends

datum Z
(t)
i . To allow for powerful protocols—with little restriction except that each machine i may

send only a certain amount of information—we allow Z
(t)
i to depend arbitrarily on the previous

messages Z
(t)
1 , . . . , Z

(t)
i−1 as well as Z

(τ)
k for all k ∈ {1, . . . ,m} and τ < t. We visualize this as a

public xblackboard B, where in each round t each Z
(t)
i is collected into B(t), along with the previous

public blackboards B(τ) for τ < t, and all machines may read these public blackboards. Thus, in

round t, individual i generates the communicated variable Z
(t)
i according to the channel

Q
Z

(t)
i

(· | Xi, Z
(t)
<i , B

(t−1)) = Q
Z

(t)
i

(· | Xi, Z
(t)
→i).

Here we have used the notation Z<i := (Z1, . . . , Zi−1), and we will use Z≤i := (Z1, . . . , Zi) and

similarly for superscripts throughout. We will also use the notation Z
(t)
→i = (B(1), Z

(t)
<i ) to denote

all the messages coming into communication of Z
(t)
i . In Figure 11.1 we illustrate two rounds of this

communication scheme.
It turns out that we can provide lower bounds on the minimax risk of communication-constrained

estimators by extending the data processing inequality approach we have developed. Our approach
to the lower bounds, which we provide in Sections 11.3.1 and 11.3.2 to follow, is roughly as follows.
First, we develop what is known in the communication complexity literature as a direct sum bound,
meaning that the difficulty of solving a d-dimensional problem is roughly d-times that of solving
a 1-dimensional version of the problem; thus, any lower bounds on the error in 1-dimensional
problems imply lower bounds for d-dimensional problems. Second, we provide an extension of
the data processing inequalities we have developed thus far to apply to particular communication
scenarios.

The key to our reductions is that we consider families of distributions where the coordinates of
X are independent, which dovetails with Assouad’s method. We thus index our distributions by
v ∈ {−1, 1}d, and in proving our lower bounds, we assume the typical Markov structure

V → (X1, . . . , Xm)→ ΠΠΠ,
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X1 X2 X3 Xm

Z
(1)
1 Z

(1)
2 Z

(1)
3 Z

(1)
m

B(1)

X1 X2 X3 Xm

Z
(1)
1 Z

(1)
2 Z

(1)
3 Z

(1)
m

B(1)

Z
(2)
1 Z

(2)
2 Z

(2)
3 Z

(2)
m

B(2)

Figure 11.1. Left: single round of communication of variables, writing to public blackboard B(1).
Right: two rounds of communication of variables, writing to public blackboards B(1) and B(2).

where V is chosen uniformly at random from {−1, 1}d, and ΠΠΠ denotes the transcript of the entire
communication—in this context, the transcript

ΠΠΠ = (B(1), . . . , B(T )),

so that it consists of all the blackboards (and the order in which things appeared on them). We
assume that X follows a d-dimensional product distribution, so that conditional on V = v we have

X ∼ Pv = Pv1 ⊗ Pv2 ⊗ · · · ⊗ Pvd . (11.3.1)

With the generation strategy (11.3.1), conditional on the jth coordinate Vj = vj , the coordinates
Xi,j are i.i.d. and independent of V\j = (V1, . . . , Vj−1, Vj+1, . . . , Vd) as well as independent of Xi′,j

for data points i′ 6= i.

11.3.1 Direct sum communication bounds

Our first step is to argue that, if we can prove a lower bound on the information complexity
of one-dimensional, we can prove a lower bound on d-dimensional problems that scales with the
dimension. To accomplish this reduction, we consider a simulator. This simulator (Fig. 11.2)
considers an experiment whereby each individual i, instead of drawing Xi, draws a coordinate
Xi,j from the “correct” distribution (conditional on Vj) while then drawing all other variables

from an alternative distribution conditional on a simulated Ṽ\j ; this simulation idea suggests the
importance of the independence structure (11.3.1), and allows us to develop the d-dimensional
penalties in estimation.

Let V ∈ {−1, 1}d and V̂ ∈ {−1, 1}d be an arbitrary estimator of V , which is a function of ΠΠΠ.

Then because the joint distributions (V,ΠΠΠ) and ((Vj , Ṽ\j), Π̃ΠΠj) are identical, we obtain

d∑
j=1

P(V̂j(ΠΠΠ) 6= Vj) =
d∑
j=1

P(V̂j(Π̃ΠΠj) 6= Vj).

Now, let X≤n,j = (Xi,j)
n
i=1 be the jth coordinate of the data, and let X≤n,\j denote the remaining

d− 1 coordinates across all i = 1, . . . , n. By construction of the simulator (Fig. 11.2), we have the
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Input: Each i = 1, . . . , n gets a sample Xi,j ∼ Pvj conditional on Vj = vj .

Draw: Shared simulated indices Ṽ\j ∈ {−1, 1}d−1

For each: i = 1, 2, . . . , n, sample simulated X̃i,\j
iid∼ Pv\j conditional on Ṽ\j = v\j

Execute: Estimation protocol on simulated data X̃ ∈ X n to obtain (simulated) private

outputs Π̃ΠΠj .

Figure 11.2: Simulation scheme for private estimation.

Markov structure
Vj → X≤n,j → Π̃ΠΠj ← X̃≤n,\j ← Ṽ\j ,

that is, we have (by independence of Ṽ\j and X̃≤n,j)

Vj → X≤n,j → Π̃ΠΠj . (11.3.2)

Now, define M±j to be the marginal distributions over the total communicated private variables

Π̃ΠΠj conditional on Vj = ±1. Then Le Cam’s inequalities (Proposition 2.17 and Proposition 2.10(a))
imply that

2
d∑
j=1

P(V̂j(ΠΠΠ) 6= Vj) ≥
d∑
j=1

(1− ‖M−j −M+j‖TV)

≥
d∑
j=1

(1−
√

2dhel(M−j ,M+j))

≥ d

1−

√√√√2

d

d∑
j=1

d2
hel(M−j ,M+j)

 (11.3.3)

by Cauchy-Schwarz. Summarizing, we have the following

Proposition 11.5 (Assouad’s method in communication). Let M+j be the marginal distribution

over Π̃ΠΠj conditional on Vj = 1 and M−j be the marginal distribution of Π̃ΠΠj conditional on Vj = −1
in the simulation protocol of Fig. 11.2 and assume Xi follow the product distribution (11.3.1). Then

d∑
j=1

P(V̂j(ΠΠΠ) 6= Vj) ≥
d

2

1−

√√√√2

d

d∑
j=1

d2
hel(M−j ,M+j)

 .

Recalling Assouad’s method of Chapter 8.1, we see that any time we have a problem with separation
with respect to the Hamming metric (8.1.1), we have a lower bound on its error in estimation
problems.

11.3.2 Data processing for single-variable communication

We now revisit our data processing inequalities, where we consider a variant that allows us to prove
lower bounds for estimation problems with limited communication. In this section, for notational
reasons, it is more notationally convenient to index distributions by 0 and 1 rather than ±1,
which we now do without further comment. Our starting point is a revised strong data processing
inequality, which we define as follows.
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Definition 11.3. Let P0, P1 be arbitrary distributions on a space X , let V ∈ {0, 1} uniformly at
random, and conditional on V = v, draw X ∼ Pv. Then consider the Markov chain V → X → Z,
where X → Z is arbitrary. The mutual information strong data processing constant β(P0, P1) is

β(P0, P1) := sup
X→Z

I(V ;Z)

I(X;Z)
,

where the supremum is taken over all conditional distributions (Markov kernels) from X to Z.

The remarkable aspect of Definition 11.3 is that it extends to communication protocols, even
with arbitrary interactions. Based on Section 11.3.1, we need consider only the case that we have
single variables in a Markov chain

V → (X1, . . . , Xm)→ ΠΠΠ, (11.3.4)

where V ∈ {0, 1}. To that end, in this section we state and prove the following theorem.

Theorem 11.6. Let P0 and P1 be distributions on X satisfying 1
cP0 ≤ P1 ≤ cP0 for some 1 ≤ c <

∞. Assume additionally that β(P0, P1) = β ≤ 1. Let Mv, v ∈ {0, 1} be the marginal distribution of
the transcript ΠΠΠ conditional on V = v in the chain (11.3.4). Then

d2
hel(M0,M1) ≤ 7

2
(c+ 1)β ·min {I(X1, . . . , Xm;ΠΠΠ | V = 0), I(X1, . . . , Xm;ΠΠΠ | V = 1)} .

In the remainder of the section, we prove Theorem 11.6. The proof is fairly involved, so we split it
into several parts.

Sequential modification of marginals

The starting point is to related the marginal distributions M0 and M1 by a sequence of one-variable
changes. To that end, we abuse notation, and for {el}ml=1 the m standard basis vectors in Rm, we
define Mel to be the marginal distribution over the protocol ΠΠΠ generated from (X1, . . . , Xm), except
that

Xi ∼

{
P0 if i 6= l

P1 if i = l
. (11.3.5)

Because M0 should be close to Mel , we hope for some type of tensorization behavior, where we can
relate M0 and M1 via one-step changes from M0 to Mel . Indeed, we have

Lemma 11.7. Let M0,M1, and Mel be as above. Then

d2
hel(M0,M1) ≤ 7

m∑
l=1

d2
hel(M0,Mel). (11.3.6)

Proof The proof is somewhat complex and relies on Euclidean structures that the Hellinger
distance induces, as well as the specific structure that the probability distributions M and P have.
We assume without loss of generality that ΠΠΠ is discrete, as the Hellinger distance is an f -divergence
and so can be arbitrarily approximated by discrete random variables.

First, we introduce a particular tensorization property—the so-called “cut and paste” prop-
erty in communication complexity [15, 33]—which will allow us to develop the decomposition
bound (11.3.6). First, we note that for any Xm

1 = xm1 , we may write

Q(ΠΠΠ = πππ | xm1 ) =
m∏
i=1

fi,πππ(xi) (11.3.7)
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for some functions fi,πππ that may depend on πππ. Indeed, for πππ = {z(t)
i }i≤n,t≤T we have

Q(πππ | xm1 ) =
∏
i,t

Q(z
(t)
i | x

m
1 , z

(t)
→i) =

m∏
i=1

T∏
t=1

Q(z
(t)
i | xi, z

(t)
→i)︸ ︷︷ ︸

=:fi,πππ(xi)

where we have used that message z
(t)
i depends only on xi and z

(t)
→i. Now we introduce yet a bit

more notation. For a bit vector b ∈ {0, 1}m, we let Mb denote the marginal distribution over the
transcript ΠΠΠ conditional on drawing

Xi | b ∼ Pbi .
Then we can write Mb(ΠΠΠ = πππ) as a product using Eq. (11.3.7): integrating over independent
Xi ∼ Pbi , we have

Mb(ΠΠΠ = πππ) =

∫
Q(πππ | xm1 )dPb1(x1) · · · dPbm(xm) =

m∏
i=1

∫
fi,πππ(xi)dPbi(xi)︸ ︷︷ ︸

:=gi,πππ(bi)

.

This gives the following lemma.

Lemma 11.8 (Cutting and pasting distances). Let a, b, c, d ∈ {0, 1}m be bit vectors. Then if for
each i ∈ [m], {ai, bi} = {ci, di} as multi-sets, we have

Ma(ΠΠΠ = πππ)Mb(ΠΠΠ = πππ) = Mc(ΠΠΠ = πππ)Md(ΠΠΠ = πππ)

and consequently
d2

hel(Ma,Mb) = d2
hel(Mc,Md).

The second result we require is due to Jayram [92], and is the following:

Lemma 11.9. Let {Pb}b∈{0,1}m be any collection of distributions satisfying the cutting and past-
ing property d2

hel(Pa, Pb) = d2
hel(Pc, Pd) whenever a, b, c, d ∈ {0, 1}m satisfy {ai, bi} = {ci, di} (as

multisets) for i = 1, . . . ,m. Let N = 2k for some k ∈ N. Then for any collection of bit vectors
{b(i)}Ni=1 ⊂ {0, 1}m with 〈b(i), b(j)〉 = 0 for all i 6= j and b =

∑
i b

(i),

k∏
l=1

(1− 2−l)d2
hel(P0, Pb) ≤

m∑
i=1

d2
hel(P0, Pb(i)).

I defer the proof, which is complex, to Section 11.5.1.
A computation shows that

∏k
l=1(1 − 2−l) > 2

7 . We see that Lemma 11.9 nearly gives us our
desired result (11.3.6), except that Lemma 11.9 requires a power of 2. To that end, let k0 be the

largest k ∈ N such that 2k0 ≤ m, and construct bit vectors b(1), . . . , b(2
k0 ) satisfying

∑
i b

(i) = 1 and
1 ≤

∥∥b(i)∥∥
0
≤ 2 for each i. Then Lemma 11.9, via the cutting-pasting property of the marginals

M , implies

2

7
d2

hel(M0,M1) ≤
2k0∑
i=1

d2
hel(M0,Mb(i)) ≤ 2

m∑
i=1

d2
hel(M0,Mei),

where the second inequality again follows from Lemma 11.9 as b(i) = ej or ej + ej′ for some basis
vectors ej , e

′
j . This gives the result.
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From Hellinger to Shannon information

Now we relate the strong data processing processing constants for mutual information in Defini-
tion 11.3 to compare Hellinger distances with mutual information. We claim the following lemma.

Lemma 11.10. Let the conditions of Theorem 11.6 hold. Let M0 and Mel be defined as above and
in Eq. (11.3.5). Then for any l ∈ {1, . . . ,m}, we have

d2
hel(Mel ,M0) ≤ c+ 1

2
βI(Xl;ΠΠΠ | V = 0).

Proof Consider the following alternative distributions. Let W ∼ Uniform{0, 1}, and draw X ′ ∈
Xm with independent coordinates according to

X ′i
iid∼ P0 if W = 0 or X ′i ∼

{
P0 if i 6= l

P1 if i = l
if W = 1.

Then we have the Markov chain W → X ′ → ΠΠΠ′, and moreover,

W → X ′l → ΠΠΠ′ ← X ′\l,

so that additionally W → X ′l → ΠΠΠ′ is a Markov chain. As a consequence, by Definition 11.3 of the
strong data processing inequality, we obtain

I(W ;ΠΠΠ′) ≤ βI(X ′l ;ΠΠΠ
′),

and then using Proposition 2.12, we have

d2
hel(Mel ,M0) ≤ I(W ;ΠΠΠ′) ≤ βI(X ′l ;ΠΠΠ

′). (11.3.8)

It remains to relate I(X ′l ;ΠΠΠ
′) to I(Xl;ΠΠΠ | V = 0). Here we use the lower bounds of P0 by P1.

Indeed, we have

P0 ≥
1

c
P1 so (c+ 1)P0 ≥ P0 + P1 or P0 ≥

2

c+ 1

P0 + P1

2
.

As a consequence, we have

I(Xl;ΠΠΠ | V = 0) =

∫
Dkl (Q(· | Xl = x)||M0) dP0(x)

≥ 2

c+ 1

∫
Dkl (Q(· | Xl = x)||M0)

dP0(x) + dP1(x)

2

≥ 2

c+ 1

∫
Dkl

(
Q(· | Xl = x)||M

) dP0(x) + dP1(x)

2

=
2

c+ 1
I(X ′l ;ΠΠΠ

′),

where the second inequality uses that M =
∫
Q(· | Xl = x)dP0(x)+dP1(x)

2 minimizes the integrated
KL-divergence (recall inequality (10.1.4)). Returning to inequality (11.3.8), we evidently have the
result of the lemma.
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Completing the proof of Theorem 11.6

By combining the tensorization Lemma 11.7 with the information bound in Lemma 11.10, we obtain

d2
hel(M0,M1) ≤ 7

m∑
i=1

d2
hel(M0,Mei) ≤

7

2
(c+ 1)β

m∑
i=1

I(Xi;ΠΠΠ | V = 0).

By symmetry, we also have

d2
hel(M0,M1) ≤ 7

m∑
i=1

d2
hel(M0,Mei) ≤

7

2
(c+ 1)β

m∑
i=1

I(Xi;ΠΠΠ | V = 1).

Now, we note that as the Xi are independent conditional on V (and w.l.o.g. for the purposes of
mutual information, we may assume they are discrete), for any v ∈ {0, 1} we have

m∑
i=1

I(Xi;ΠΠΠ | V = v) =

m∑
i=1

[H(Xi | V = v)−H(Xi | ΠΠΠ, V = v)]

=

m∑
i=1

[
H(Xi | Xi−1

1 , V = v)−H(Xi | ΠΠΠ, V = v)
]

≤
m∑
i=1

[
H(Xi | Xi−1

1 , V = v)−H(Xi | Xi−1
1 ,ΠΠΠ, V = v)

]
=

m∑
i=1

I(Xi;ΠΠΠ | Xi−1
1 , V = v) = I(X1, . . . , Xm;ΠΠΠ | V = v),

where the inequality used that conditioning decreases entropy. We thus obtain

d2
hel(M0,M1) ≤ 7

2
(c+ 1)β min

v∈{0,1}
I(X1, . . . , Xm;ΠΠΠ | V = v)

as desired.

11.3.3 Data processing and Assouad’s method for multiple variables

By combining the results in Sections 11.3.2 and 11.3.1, we can obtain bounds on the probability of
error—detection of d-dimensional signals—in higher dimensional problems based on mutual infor-
mation alone. Because Theorem 11.6 provides a bound involving the minimum of the conditional
mutual informations, we actually have substantial freedom in doing this. We provide perhaps the
simplest variant of this development; there are other possibilities that we omit, such as situations
in which we wish to estimate sparse signals.

We thus recall the definition (11.3.1) of our product distribution signals, where we assume
that each individual datum Xi = (Xi,1, . . . , Xi,d) = (Xi,j)

d
j=1 belongs to a d-dimensional set and

conditional on V = v ∈ {−1, 1}d has independent coordinates distributed as Xi,j ∼ Pvj . With
this, we have the following theorem, which follows by a combination of Assouad’s method (in the
context of communication bounds, i.e. Proposition 11.5) and Theorem 11.6.

Theorem 11.11. Let ΠΠΠ be the transcript of the entire communication protocol in Figure 11.1, let

V ∈ {−1, 1}d be uniform, and generate Xi
iid∼ Pv, i = 1, . . . ,m, with independent coordinates as in
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Eq. (11.3.1). Assume additionally that for each coordinate j = 1, . . . , d, the coordinate distributions
P−1 and P1 satisfy 1

cP−1 ≤ P1 ≤ cP−1 for some 1 ≤ c < ∞, and that they satisfy the mutual
information data processing inequality (Def. 11.3) with constant β(P−1, P1) ≤ β ≤ 1. Then for any
estimator V̂ ,

d∑
j=1

P(V̂j(ΠΠΠ) 6= Vj) ≥
d

2

(
1−

√
7(c+ 1)

β

d
· I(X1, . . . , Xm;ΠΠΠ | V )

)
.

Proof Under the given conditions, Proposition 11.5 and Theorem 11.6 immediately combine to
give

d∑
j=1

P(V̂j(ΠΠΠ) 6= Vj) ≥
d

2

1−

√√√√7(c+ 1)
β

d

d∑
j=1

min
v∈{−1,1}

I(X1,j , . . . , Xm,j ;ΠΠΠ | Vj = v)

 .

Now, we note that

min
v∈{−1,1}

I(X1,j , . . . , Xm,j ;ΠΠΠ | Vj = v) ≤ I(X1,j , . . . , Xm,j ;ΠΠΠ | Vj).

Then we have—assuming w.l.o.g. that the Xi,j are discrete—that

d∑
j=1

I((Xi,j)
m
i=1;ΠΠΠ | Vj) =

d∑
j=1

[H((Xi,j)
m
i=1 | Vj)−H((Xi,j)

m
i=1 | ΠΠΠ, Vj)]

(i)
=

d∑
j=1

[
H((Xi,j)

m
i=1 | (Xi,j′)i≤m,j′<j , V )−H((Xi,j)

m
i=1 | ΠΠΠ, Vj)

]
≤

d∑
j=1

[
H((Xi,j)

m
i=1 | (Xi,j′)i≤m,j′<j , V )−H((Xi,j)

m
i=1 | (Xi,j′)i≤m,j′<j ,ΠΠΠ, V )

]
=

d∑
j=1

I((Xi,j)
m
i=1;ΠΠΠ | V, (Xi,j′)i≤m,j′<j) = I(X1, . . . , Xm;ΠΠΠ | V ),

where equality (i) used the independence of Xi,j from V\j and Xi,j′ for j′ 6= j given Vj , and the
inequality that conditioning reduces entropy. This gives the theorem.

11.4 Applications, examples, and lower bounds

Let us now turn to a few different applications of our lower bounds on communication-constrained
estimators. To develop a lower bound based on Section 11.3, we evidently require two conditions:
first, we must show that the distributions our data follows satisfy a strong (mutual information)
data processing inequality. Second, we must provide a (good enough) upper bound on the mutual
information I(X1, . . . , Xm;ΠΠΠ | V ) between the actual data points Xi and the transcript or output
ΠΠΠ of the protocol.

We thus begin with a lemma providing bounds on mutual information data processing for
whenever the distributions generating X have bounded likelihood ratios.

183



Stanford Statistics 311/Electrical Engineering 377 John Duchi

Lemma 11.12. Let V → X → Z, where X ∼ Pv conditional on V = v. If | log dPv
dPv′
| ≤ α for all

v, v′, then

I(V ;Z) ≤ 4(eα − 1)2EZ
[
‖PX(· | Z)− PX‖2TV

]
≤ 2(eα − 1)2I(X;Z).

We leave the proof of this lemma as an exercise (See Question 11.4).
There are many additional strategies to providing bounds and strong data processing inequal-

ities; we will focus mainly on situations with bounded likelihood ratio. A brief example may help
to illustrate Lemma 11.12.

Example 11.13 (Bernoulli distributions): Let Pv = Bernoulli(1+vδ
2 ) for v ∈ {−1, 1}. Then

we have likelihood ratio bound ∣∣∣∣log
dP1

dP−1

∣∣∣∣ ≤ log
1 + δ

1− δ
and so under the conditions of Lemma 11.12, for any Z we have

I(V ;Z) ≤ 2(
1 + δ

1− δ
− 1)2I(X;Z) ≤ 2

(
2δ

1− δ

)2

I(X;Z)
(i)

≤ 10δ2I(X;Z),

where inequality (i) holds for δ ∈ [0, 1/5]. 3

11.4.1 Communication lower bounds

We now provide a few lower bounds on communication complexity in distributed estimation. We
focus on the case where the generating distributions have bounded likelihood ratios, as this allows
us to prove the results more straightforwardly. In this first section, we assume that each machine
i = 1, . . . ,m may send at most Bi total bits of information throughout the entire communication
protocol—that is, for each pair i, t, we have a bound

H(Z
(t)
i | Z

(t)
→i) ≤ Bi,t and

∑
t

Bi,t ≤ Bi (11.4.1)

on the message from Xi in round t. (This is a weaker condition that H(Z
(t)
i ) ≤ Bi,t for each i, t.)

With this bound, we can provide minimax lower bounds on communication-constrained estimator.
For our first collection, we consider estimating the parameters of d independent Bernoulli dis-

tributions in squared error. Let Pd be the family of d-dimensional Bernoulli distributions, where
we let the parameter θ ∈ [0, 1]d be such that Pθ(Xj = 1) = θj . Then we have the following result.

Proposition 11.14. Let Mm(θ(Pd), ‖·‖22 , {Bi}mi=1) denote the minimax mean-square error for es-
timation of a d-dimensional Bernoulli under the information constraint (11.4.1). Then

Mm(θ(Pd), ‖·‖22 , {Bi}
m
i=1) ≥ cmin

{
d

m

d
1
m

∑m
i=1Bi

, d

}
,

where c > 0 is a numerical constant.

Proof By the standard Assouad reduction, by taking coordinates Pvj = Bernoulli(
1+δvj

2 ), we
have a cδ2-separation in Hamming metric. Applying Theorem 11.6 and Example 11.13, we obtain
the minimax lower bound, valid for 0 ≤ δ ≤ 1

5 , of

Mm(θ(Pd), ‖·‖22 , {Bi}
m
i=1) ≥ cδ2d

(
1−

√
C
δ2

d
I(X1, . . . , Xm;ΠΠΠ | V )

)
.
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Now, we note that for any Markov chain V → X → Z, we have I(X;Z | V ) = H(Z | V ) −H(Z |
X,V ) = H(Z | V )−H(Z | X) ≤ H(Z)−H(Z | X) = I(X;Z). Thus we obtain

I(X1, . . . , Xm;ΠΠΠ | V ) ≤ I(X1, . . . , Xm;ΠΠΠ)

=
m∑
i=1

T∑
t=1

I(X1, . . . , Xm;Z
(t)
i | Z

(t)
→i).

As Z
(t)
i ⊥ X\i | Z

(t)
→i, Xi, we have that this final quantity is equal to

∑
i,t I(Xi;Z

(t)
i | Z

(t)
→i). But of

course I(Xi;Z
(t)
i | Z

(t)
→i) ≤ H(Z

(t)
i | Z

(t)
→i) ≤ Bi,t, and thus we have

Mm(θ(Pd), ‖·‖22 , {Bi}
m
i=1) ≥ cδ2d

1−

√√√√C
δ2

d

∑
i,t

Bi,t

 .

Choosing δ = min{1/5, d
2C

∑
iBi
} gives the result.

11.4.2 Lower bounds in locally private estimation

The key insight: if the channels are εi,t-differentially private, then

I(X1, . . . , Xn;Zt≤Ti≤n ) ≤ C
∑
i,t

εi,t ∧ ε2
i,t.

11.5 Technical proofs and arguments

11.5.1 Proof of Lemma 11.9

We prove the result by induction. It is trivially true for m = 1, that is, k = 0, so now we consider
the inductive case, that is, it holds for m = 1, . . . , 2k−1 and we consider m = 2k.

First, we make the following claim: let {ui}Ni=1 be arbitrary vectors, and define the distance
matrix D = [‖ui − uj‖22]i,j ∈ RN×N+ . Then

vTDv ≤ 0 for all v ∈ Rn s.t. 1T v ≤ 0. (11.5.1)

Indeed, letting U = [u1 · · · uN ] be the matrix with columns ui, we have D = 11T diag(UTU) +
diag(UTU)11T − UTU , so that vTDv = −vTUTUv ≤ 0. As a consequence of inequality (11.5.1),
we obtain for any u0, . . . , uN that

n∑
i=1

‖u0 − ui‖22 ≥
1

N

∑
1≤i<j≤N

‖ui − uj‖22 (11.5.2)

by taking the vector v so that v0 = N and v1, . . . , vN = −1 in inequality (11.5.1).

Now, we return to the Hellinger distances. Evidently 2d2
hel(Pa, Pb) =

∥∥√pa(·)−√pb(·)∥∥2

2
, so

that it is a Euclidean distance. As a consequence, for any pairwise disjoint collection of N bit
vectors b(i), we have

N∑
i=1

d2
hel(P0, Pb(i)) ≥

1

N

∑
1≤i<j≤N

d2
hel(Pb(i) , Pb(j)) =

1

N

∑
1≤i<j≤N

d2
hel(P0, Pb(i)+b(j)) (11.5.3)
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where the inequality follows from (11.5.2) and the equality by the assumed cut-and-paste property.
Now, we apply Baranyai’s theorem, which says that we may decompose any complete graph KN ,
where N is even, into N − 1 perfect matchings Mi with N/2 edges—necessarily, as they form a
perfect matching—where each Mi is edge disjoint. Identifying the pairs i < j with the complete
graph, we thus obtain∑

1≤i<j≤N
d2

hel(P0, Pb(i)+b(j)) =
N−1∑
l=1

∑
(i,j)∈Ml

d2
hel(P0, Pb(i)+b(j)). (11.5.4)

Now fix n ∈ {1, . . . , N−1} and a matchingMn. By assumption we have 〈b(i)+b(j), b(i
′)+b(j

′)〉 =
0 for any distinct pairs (i, j), (i′, j′) ∈ Mn, and moreover,

∑
(i,j)∈Mn

(b(i) + b(j)) = b. Thus, our
induction hypothesis gives that for any l ∈ {1, . . . , N − 1} and any of our matchings Mn, we have

∑
(i,j)∈Mn

d2
hel(P0, Pb(i)+b(j)) ≥ d

2
hel(P0, Pb)

k−1∏
l=1

(1− 2−l).

Substituting this lower bound into inequality (11.5.4) and using inequality (11.5.3), we obtain

N∑
i=1

d2
hel(P0, Pb(i)) ≥

1

N
· (N − 1)d2

hel(P0, Pb)
k−1∏
l=1

(1− 2−l) = d2
hel(P0, Pb)

k∏
l=1

(1− 2−l),

where we have used N = 2k.

11.6 Bibliography

Strong data processing inequalities are all over. Raginsky [117] provides a nice survey. Dobrushin
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Markov chains to achieve central limit theorems; Cohen et al. [43] first proved Theorem 11.2 for
finite state spaces using careful linear algebraic techniques, and later Del Moral et al. [53] proved
the result with the approach we outline below the theorem.
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11.7 Exercises

Question 11.1: For k ∈ [1,∞], we consider the collection of distributions

Pk := {P : EP [|X|k]1/k ≤ 1},

that is, distributions P supported on R with kth moment bounded by 1. We consider minimax
estimation of the mean E[X] for these families under ε-local differential privacy, meaning that for
each observation Xi, we observe a private realization Zi (which may depend on Zi−1

1 ) where Zi
is an ε-differentially private view of Xi. Let Qε denote the collection of all ε-differentially private
channels, and define the (locally) private minimax risk

Mn(θ(P), (·)2, ε) := inf
θ̂n

inf
Q∈Qε

sup
P∈P

EP,Q[(θ̂n(Zn1 )− θ(P ))2].
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(a) Assume that ε ≤ 1. For k ∈ [1,∞], show that there exists a constant c > 0 such that

Mn(θ(Pk), (·)2, ε) ≥ c
(

1

nε2

) k−1
k

.

(b) Give an ε-locally differentially private estimator achieving the minimax rate in part (a).

Question 11.2: In this question, we apply the results of Question 7.3 to a problem of estimation
of drug use. Assume we interview a series of individuals i = 1, . . . , n, asking each whether he
or she takes illicit drugs. Let Xi ∈ {0, 1} be 1 if person i uses drugs, 0 otherwise, and define
θ∗ = E[X] = E[Xi] = P (X = 1). To avoid answer bias, each answerXi is perturbed by some channel
Q, where Q is ε-differentially private (recall definition (7.6.3)). That is, we observe independent Zi
where conditional on Xi, we have

Zi | Xi = x ∼ Q(· | Xi = x).

To make sure everyone feels suitably private, we assume ε < 1/2 (so that (eε − 1)2 ≤ 2ε2). In the
questions, let Qε denote the family of all ε-differentially private channels, and let P denote the
Bernoulli distributions with parameter θ(P ) = P (Xi = 1) ∈ [0, 1] for P ∈ P.

(a) Use Le Cam’s method and the strong data processing inequality (7.6.4) to show that the
minimax rate for estimation of the proportion θ∗ in absolute value satisfies

Mn(θ(P), | · |, ε) := inf
Q∈Qε

inf
θ̂

sup
P∈P

E
[
|θ̂(Z1, . . . , Zn)− θ(P )|

]
≥ c 1√

nε2
,

where c > 0 is a universal constant. Here the infimum is over channels Q and estimators θ̂, and
the expectation is taken with respect to both the Xi (according to P ) and the Zi (according
to Q(· | Xi)).

(b) Give a rate-optimal estimator for this problem. That is, define a channelQ that is ε-differentially
private and an estimator θ̂ such that E[|θ̂(Zn1 ) − θ|] ≤ C/

√
nε2, where C > 0 is a universal

constant.

(c) Let Pk, for k ≥ 2, denote the family of distributions on R such that EP |X|k ≤ 1 for P ∈ Pk
(note that X is no longer restricted to have support {0, 1}). Show, similarly to part (a), that
for θ(P ) = EP [X]

Mn(θ(Pk), | · |, ε) := inf
Q∈Qε

inf
θ̂

sup
P∈P

E
[
|θ̂(Z1, . . . , Zn)− θ(P )|

]
≥ c 1

(nε2)
k−1
2k

.

What does this say about k = 2?

(d) Download the dataset at http://web.stanford.edu/class/stats311/Data/drugs.txt, which
consists of a sample of 100,000 hospital admissions and whether the patient was abusing drugs
(a 1 indicates abuse, 0 no abuse). Use your estimator from part (b) to estimate the population
proportion of drug abusers: give an estimated number of users for ε ∈ {2−k, k = 0, 1, . . . , 10}.
Perform each experiment several times. Assuming that the proportion of users in the dataset
is the true population proportion, how accurate is your estimator?
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Question 11.3 (Lower bounds for private logistic regression): This question is (likely) challenging.
Consider the logistic regression model for y ∈ {±1}, x ∈ Rd, that

pθ(y | x) =
1

1 + exp(−y〈θ, x〉)
.

For a distribution P on (X,Y ) ∈ Rd × {±1}, where Y | X = x has logistic distribution, define the
excess risk

L(θ, P ) := EP [`(θ;X,Y )]− inf
θ
EP [`(θ;X,Y )]

where `(θ;x, y) = log(1 + exp(−y〈x, θ〉)) is the logistic loss. Let P be the collection of such
distributions, where X is supported on {−1, 1}d. Following the notation of Question 7.5, for a
channel Q mapping (X,Y )→ Z, define

Mn(P, L,Q) := inf
θ̂

sup
P∈P

EP,Q[L(θ̂(Zn1 ), P )],

where the expectation is taken over Zi ∼ Q(· | Xi, Z
i−1
1 ). Assume that the channel releases are all

(locally) ε-differentially private.

(a) Show that for all n large enough,

Mn(P, L,Q) ≥ c · d
n
· d

ε ∧ ε2

for some (numerical) constant c > 0.

(b) Suppose we allow additional passes through the dataset (i.e. multiple rounds of communication),
but still require that all data Zi released from Xi be ε-differentially private. That is, assume
we have the (sequential and interactive) release schemes of Fig. 11.1, and we guarantee that

Z
(t)
i ∼ Q(· | Xi, B

(1), . . . , B(t), Z
(t)
1 , . . . , Z

(t)
i−1)

is εi,t-differentially private, where
∑

t εi,t ≤ ε for all i. Does the lower bound of part (a) change?

Question 11.4: Prove Lemma 11.12.

Question 11.5: Prove Proposition 11.1.
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Estimation of functionals

To be written.
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Part III

Entropy, divergences, and information
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Chapter 13

Basics of source coding

In this chapter, we explore the basic results in source coding—that is, given a sequence of random
variables X1, X2, . . . distributed according to some known distribution P , how much storage is
required for us to encode the random variables? The material in this chapter is covered in a variety
of sources; standard references include Cover and Thomas [46] and Csiszár and Körner [48].

13.1 The source coding problem

The source coding problem—in its simplest form—is that of most efficiently losslessly encoding a
sequence of symbols (generally random variables) drawn from a known distribution. In particular,
we assume that the data consist of a sequence of symbols X1, X2, . . ., drawn from a known distri-
bution P on a finite or countable space X . We wish to choose an encoding, represented by a d-ary
code function C that maps X to finite strings consisting of the symbols {0, 1, . . . , d−1}. We denote
this by C : X → {0, 1, . . . , d− 1}∗, and use `C(x) to denote the length of the string C(x).

In general, we will consider a variety of types of codes; we define each in order of complexity of
their decoding.

Definition 13.1. A d-ary code C : X → {0, . . . , d − 1}∗ is non-singular if for each x, x′ ∈ X we
have

C(x) 6= C(x′) if x 6= x′.

While Definition 13.1 is natural, generally speaking, we wish to transmit or encode a variety of
codewords simultaneously, that is, we wish to encode a sequence X1, X2, . . . using the natural exten-
sion of the code C as the string C(X1)C(X2)C(X3) · · · , where C(x1)C(x2) denotes the concatenation
of the strings C(x1) and C(x2). In this case, we require that the code be uniquely decodable:

Definition 13.2. A d-ary code C : X → {0, . . . , d− 1}∗ is uniquely decodable if for all sequences
x1, . . . , xn ∈ X and x′1, . . . , x

′
n ∈ X we have

C(x1)C(x2) · · ·C(xn) = C(x′1)C(x′2) · · ·C(x′n) if and only if x1 = x′1, . . . , xn = x′n.

That is, the extension of the code C to sequences is non-singular.

While more useful (generally) than simply non-singular codes, uniquely decodable codes may require
inspection of an entire string before recovering the first element. With that in mind, we now consider
the easiest to use codes, which can always be decoded instantaneously.
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Definition 13.3. A d-ary code C : X → {0, . . . , d− 1}∗ is uniquely decodable or instantaneous if
no codeword is the prefix to another codeword.

As is hopefully apparent from the definitions, all prefix/instantaneous codes are uniquely decodable,
which are in turn non-singular. The converse is not true, though we will see a sense in which—as
long as we care only about encoding sequences—using prefix instead of uniquely decodable codes
has negligible consequences.

For example, written English, with periods (.) and spaces ( ) included at the ends of words
(among other punctuation) is an instantaneous encoding of English into the symbols of the alphabet
and punctuation, as punctuation symbols enforce that no “codeword” is a prefix of any other. A
few more concrete examples may make things more clear.

Example 13.1 (Encoding strategies): Consider the encoding schemes below, which encode
the letters a, b, c, and d.

Symbol C1(x) C2(x) C3(x)

a 0 00 0
b 00 10 10
c 000 11 110
d 0000 110 111

By inspection, it is clear that C1 is non-singular but certainly not uniquely decodable (does
the sequence 0000 correspond to aaaa, bb, aab, aba, baa, ca, ac, or d?), while C3 is a prefix
code. We leave showing that C2 is uniquely decodable is an exercise for the interested reader.
3

13.2 The Kraft-McMillan inequalities

We now turn toward a few rigorous results on the coding properties and the connections between
source-coding and entropy. Our first result is an essential result that—as we shall see–essentially
says that there is no difference in code-lengths attainable by prefix codes and uniquely decodable
codes.

Theorem 13.2. Let X be a finite or countable set, and let ` : X → N be a function. If `(x) is the
length of the encoding of the symbol x in a uniquely decodable d-ary code, then∑

x∈X
d−`(x) ≤ 1. (13.2.1)

Conversely, given any function ` : X → N satisfying inequality (13.2.1), there is a prefix code whose
codewords have length `(x) for each x ∈ X .

Proof We prove the first statement of the theorem first by a counting and asymptotic argument.
We begin by assuming that X is finite; we eliminate this assumption subsequently. As a

consequence, there is some maximum length `max such that `(x) ≤ `max for all x ∈ X . For a sequence
x1, . . . , xn ∈ X , we have by the definition of our encoding strategy that `(x1, . . . , xn) =

∑n
i=1 `(xi).

In addition, for each m we let

En(m) := {x1:n ∈ X n such that `(x1:n) = m}
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x2 x3 x5 x6 x7

Figure 13.1. Prefix-tree encoding of a set of symbols. The encoding for x1 is 0, for x2 is 10, for
x3 is 11, for x4 is 12, for x5 is 20, for x6 is 21, and nothing is encoded as 1, 2, or 22.

denote the symbols x encoded with codewords of length m in our code, then as the code is uniquely
decodable we certainly have card(En(m)) ≤ dm for all n and m. Moreover, for all x1:n ∈ X n we
have `(x1:n) ≤ n`max. We thus re-index the sum

∑
x d
−`(x) and compute

∑
x1,...,xn∈Xn

d−`(x1,...,xn) =

n`max∑
m=1

card(En(m))d−m

≤
n`max∑
m=1

dm−m = n`max.

The preceding relation is true for all n ∈ N, so that( ∑
x1:n∈Xn

d−`(x1:n)

)1/n

≤ n1/n`1/nmax → 1

as n→∞. In particular, using that∑
x1:n∈Xn

d−`(x1:n) =
∑

x1,...,xn∈Xn
d−`(x1) · · · d−`(xn) =

(∑
x∈X

d−`(x)

)n
,

we obtain
∑

x∈X d
−`(x) ≤ 1.

We remark in passing if card(X ) =∞, then by defining the sequence

Dk :=
∑

x∈X ,`(x)≤k

d−`(x),

as each subset {x ∈ X : `(x) ≤ k} is uniquely decodable, we have Dk ≤ 1 for all k and 1 ≥
limk→∞Dk =

∑
x∈X d

−`(x).
The achievability of such a code is straightforward by a pictorial argument (recall Figure 13.1),

so we sketch the result non-rigorously. Indeed, let Td be an (infinite) d-ary tree. Then, at each
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level m of the tree, assign one of the nodes at that level to each symbol x ∈ X such that `(x) = m.
Eliminate the subtree below that node, and repeat with the remaining symbols. The codeword
corresponding to symbol x is then the path to the symbol in the tree.

With the Kraft-McMillan theorem in place, we we may directly relate the entropy of a random
variable to the length of possible encodings for the variable; in particular, we show that the entropy
is essentially the best possible code length of a uniquely decodable source code. In this theorem,
we use the shorthand

Hd(X) := −
∑
x∈X

p(x) logd p(x).

Theorem 13.3. Let X ∈ X be a discrete random variable distributed according to P and let `C be
the length function associated with a d-ary encoding C : X → {0, . . . , d− 1}∗. In addition, let C be
the set of all uniquely decodable d-ary codes for X . Then

Hd(X) ≤ inf {EP [`C(X)] : C ∈ C} ≤ Hd(X) + 1.

Proof The lower bound is an argument by convex optimization, while for the upper bound
we give an explicit length function and (implicit) prefix code attaining the bound. For the lower
bound, we assume for simplicity that X is finite, and we identify X = {1, . . . , |X |} (let m = |X | for
shorthand). Then as C consists of uniquely decodable codebooks, all the associated length functions
must satisfy the Kraft-McMillan inequality (13.2.1). Letting `i = `(i), the minimal encoding length
is at least

inf
`∈Rm

{
m∑
i=1

pi`i :

m∑
i=1

d−`i ≤ 1

}
.

By introducing the Lagrange multiplier λ ≥ 0 for the inequality constraint, we may write the
Lagrangian for the preceding minimization problem as

L(`, λ) = p>`+ λ

(
n∑
i=1

d−`i − 1

)
with ∇`L(`, λ) = p− λ

[
d−`i log d

]m
i=1

.

In particular, the optimal ` satisfies `i = logd
θ
pi

for some constant θ, and solving
∑m

i=1 d
− logd

θ
pi = 1

gives θ = 1 and `(i) = logd
1
pi

.

To attain the result, simply set our encoding to be `(x) =
⌈
logd

1
P (X=x)

⌉
, which satisfies the

Kraft-McMillan inequality and thus yields a valid prefix code with

EP [`(X)] =
∑
x∈X

p(x)

⌈
logd

1

p(x)

⌉
≤ −

∑
x∈X

p(x) logd p(x) + 1 = Hd(X) + 1

as desired.

194



Stanford Statistics 311/Electrical Engineering 377 John Duchi

13.3 Entropy rates and longer codes

Finally, we show that it is possible, at least for appropriate distributions on random variables Xi,
to achieve a per-symbol encoding length that approaches a limiting version of the Shannon entropy
of a random variable. To that end, we give two definitions capturing the limiting entropy properties
of sequences of random variables.

Definition 13.4. The entropy rate of a sequence X1, X2, . . . of random variables is

H({Xi}) := lim
n→∞

1

n
H(X1, . . . , Xn) (13.3.1)

whenever the limit exists.

In some situations, the limit (13.3.1) may not exist. However, there are a variety of situations in
which it does, and we focus generally on a specific but common instance in which the limit does
exist. First, we recall the definition of a stationary sequence of random variables.

Definition 13.5. We say a sequence X1, X2, . . . of random variable is stationary if for all n and
all k ∈ N and all measurable sets A1, . . . , Ak ⊂ X we have

P(X1 ∈ A1, . . . , Xk ∈ Ak) = P(Xn+1 ∈ A1, . . . , Xn+k ∈ Ak).

With this definition, we have the following result.

Proposition 13.4. Let the sequence of random variables {Xi}, taking values in the discrete space
X , be stationary. Then

H({Xi}) = lim
n→∞

H(Xn | X1, . . . , Xn−1)

and the limits (13.3.1) and above exist.

Proof We begin by making the following standard observation of Cesàro means: if cn = 1
n

∑n
i=1 ai

and ai → a, then cn → a.1 Now, we note that for a stationary sequence, we have that

H(Xn | X1:n−1) = H(Xn+1 | X2:n),

and using that conditioning decreases entropy, we have

H(Xn+1 | X1:n) ≤ H(Xn | X1:n−1).

Thus the sequence an := H(Xn | X1:n−1) is non-increasing and bounded below by 0, so that it has
some limit limn→∞H(Xn | X1:n−1). As H(X1, . . . , Xn) =

∑n
i=1H(Xi | X1:i−1) by the chain rule

for entropy, we achieve the result of the proposition.

Finally, we present a result showing that it is possible to achieve average code length of at most
the entropy rate, which for stationary sequences is smaller than the entropy of any single random
variable Xi. To do so, we require the use of a block code, which (while it may be prefix code) treats
sets of random variables (X1, . . . , Xm) ∈ Xm as a single symbol to be jointly encoded.

1 Indeed, let ε > 0 and take N such that n ≥ N implies that |ai − a| < ε. Then for n ≥ N , we have

cn − a =
1

n

n∑
i=1

(ai − a) =
N(cN − a)

n
+

1

n

n∑
i=N+1

(ai − a) ∈ N(cN − a)

n
± ε.

Taking n → ∞ yields that the term N(cN − a)/n → 0, which gives that cn − a ∈ [−ε, ε] eventually for any ε > 0,
which is our desired result.
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Proposition 13.5. Let the sequence of random variables X1, X2, . . . be stationary. Then for any
ε > 0, there exists an m ∈ N and a d-ary (prefix) block encoder C : Xm → {0, . . . , d− 1}∗ such that

lim
n

1

n
EP [`C(X1:n)] ≤ H({Xi}) + ε = lim

n
H(Xn | X1, . . . , Xn−1) + ε.

Proof Let C : Xm → {0, 1, . . . , d− 1}∗ be any prefix code with

`C(x1:m) ≤
⌈

log
1

P (X1:m = x1:m)

⌉
.

Then whenever n/m is an integer, we have

EP [`C(X1:n)] =

n/m∑
i=1

EP
[
`C(Xmi+1, . . . , Xm(i+1))

]
≤

n/m∑
i=1

[
H(Xmi+1, . . . , Xm(i+1)) + 1

]
=

n

m
+
n

m
H(X1, . . . , Xm).

Dividing by n gives the result by taking m suitably large that 1
m+ 1

mH(X1, . . . , Xm) ≤ ε+H({Xi}).
Note that if the m does not divide n, we may also encode the length of the sequence of encoded

words in each block of length m; in particular, if the block begins with a 0, it encodes m symbols,
while if it begins with a 1, then the next dlogdme bits encode the length of the block. This would
yields an increase in the expected length of the code to

EP [`C(X1:n)] ≤ 2n+ dlog2me
m

+
n

m
H(X1, . . . , Xm).

Dividing by n and letting n→∞ gives the result, as we can always choose m large.
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Chapter 14

Exponential families and maximum
entropy

In this set of notes, we give a very brief introduction to exponential family models, which are a broad
class of distributions that have been extensively studied in the statistics literature [34, 5, 16, 135].
There are deep connections between exponential families, convex analysis [135], and information
geometry and the geometry of probability measures [5], and we will only touch briefly on a few of
those here.

14.1 Review or introduction to exponential family models

We begin by defining exponential family distributions, giving several examples to illustrate a few
of their properties. To define an exponential family distribution, we always assume there is some
base measure µ on a space X , and there exists a sufficient statistic φ : X → Rd, where d ∈ N is
some fixed integer. For a given sufficient statistic function φ, let θ ∈ Rd be an associated vector of
canonical parameters. Then with this notation, we have the following.

Definition 14.1. The exponential family associated with the function φ and base measure µ is
defined as the set of distributions with densities pθ with respect to µ, where

pθ(x) = exp (〈θ, φ(x)〉 −A(θ)) , (14.1.1)

and the function A is the log-partition-function (or cumulant function) defined by

A(θ) := log

∫
X

exp (〈θ, φ(x)〉) dµ(x), (14.1.2)

whenever A is finite.

In some settings, it is convenient to define a base function h : X → R+ and define

pθ(x) = h(x) exp(〈θ, φ(x)〉 −A(θ)),

though we can always simply include h in the base measure µ. In some scenarios, it may be convient
to re-parameterize the problem in terms of some function η(θ) instead of θ itself; we will not worry
about such issues and simply use the formulae that are most convenient.

We now give a few examples of exponential family models.

197



Stanford Statistics 311/Electrical Engineering 377 John Duchi

Example 14.1 (Bernoulli distribution): In this case, we have X ∈ {0, 1} and P (X = 1) = p
for some p ∈ [0, 1] in the classical version of a Bernoulli. Thus we take µ to be the counting
measure on {0, 1}, and by setting θ = log p

1−p to obtain a canonical representation, we have

P (X = x) = p(x) = px(1− p)1−x = exp(x log p− x log(1− p))

= exp

(
x log

p

1− p
+ log(1− p)

)
= exp

(
xθ − log(1 + eθ)

)
.

The Bernoulli family thus has log-partition function A(θ) = log(1 + eθ). 3

Example 14.2 (Poisson distribution): The Poisson distribution (for count data) is usually
parameterized by some λ > 0, and for x ∈ N has distribution Pλ(X = x) = (1/x!)λxe−λ. Thus
by taking µ to be counting (discrete) measure on {0, 1, . . .} and setting θ = log λ, we find the
density (probability mass function in this case)

p(x) =
1

x!
λxe−λ = exp(x log λ− λ)

1

x!
= exp(xθ − eθ) 1

x!
.

Notably, taking h(x) = (x!)−1 and log-partition A(θ) = eθ, we have probability mass function
pθ(x) = h(x) exp(θx−A(θ)). 3

Example 14.3 (Normal distribution): For the normal distribution, we take µ to be Lebesgue
measure on (−∞,∞). Then N(µ,Σ) can be re-parameterized as as Θ = Σ−1 and θ = Σ−1µ,
and we have density

pθ,Θ(x) ∝ exp

(
〈θ, x〉+

1

2
〈xx>,Θ〉

)
,

where 〈·, ·〉 denotes the Euclidean inner product. 3

14.1.1 Why exponential families?

There are many reasons for us to study exponential families. As we see presently, they arise as the
solutions to several natural optimization problems on the space of probability distributions. They
also enjoy certain robustness properties related to optimal Bayes’ procedures (more to come on this
topic). Moreover, they are analytically very tractable, and have been the objects of substantial
study for nearly the past hundred years. As one example, the following result is well-known (see,
e.g., Wainwright and Jordan [135, Proposition 3.1] or Brown [34]):

Proposition 14.4. The log-partition function θ 7→ A(θ) is infinitely differentiable on its open
domain Θ := {θ ∈ Rd : A(θ) <∞}. Moreover, A is convex.

Proof We show convexity; the proof of the infinite differentiability follows from an argument
using the dominated convergence theorem that allows passing the derivative through the integral
defining A. For convexity, let let θλ = λθ1 + (1 − λ)θ2, where θ1, θ2 ∈ Θ. Then 1/λ ≥ 1 and
1/(1− λ) ≥ 1, and Hölder’s inequality implies

log

∫
exp(〈θλ, φ(x)〉)dµ(x) = log

∫
exp(〈θ1, φ(x)〉)λ exp(〈θ2, φ(x)〉)1−λdµ(x)

≤ log

(∫
exp(〈θ1, φ(x)〉)

λ
λdµ(x)

)λ(∫
exp(〈θ2, φ(x)〉)

1−λ
1−λdµ(x)

)1−λ

= λ log

∫
exp(〈θ1, φ(x)〉)dµ(x) + (1− λ) log

∫
exp(〈θ2, φ(x)〉)dµ(x),
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as desired.

As a final remark, we note that this convexity makes estimation in exponential families sub-
stantially easier. Indeed, given a sample X1, . . . , Xn, assume that we estimate θ by maximizing the
likelihood (equivalently, minimizing the log-loss):

minimize
θ

n∑
i=1

log
1

pθ(Xi)
=

n∑
i=1

[−〈θ, φ(Xi)〉+A(θ)] ,

which is thus convex in θ. This means there are no local minima, and tractable algorithms exist for
solving maximum likelihood. Later we will explore some properties of these types of minimization
and log-loss problems.

14.2 Shannon entropy

We now explore a generalized version of entropy known as Shannon entropy, which allows us to
define an entropy functional for essentially arbitrary distributions. This comes with a caveat,
however: to define this entropy, we must fix a base measure µ ahead of time against which we
integrate. In this case, we have

Definition 14.2. Let µ be a base measure on X and assume P has density p with respect to µ.
Then the Shannon entropy of P is

H(P ) = −
∫
p(x) log p(x)dµ(x).

Notably, if X is a discrete set and µ is counting measure, then H(P ) = −
∑

x p(x) log p(x) is
simply the standard entropy. However, for other base measures the calculation is different. For
example, if we take µ to be Lebesgue measure, meaning that dµ(x) = dx and giving rise to the
usual integral on R (or Rd), then we obtain differential entropy [46, Chapter 8].

Example 14.5: Let P be the uniform distribution on [0, a]. Then the differential entropy
H(P ) = − log(1/a) = log a. 3

Example 14.6: Let P be the normal distribution N(µ,Σ) and µ be Lebesgue measure. Then

H(P ) = −
∫
p(x)

[
log

1√
2π det(Σ)

− 1

2
(x− µ)>Σ−1(x− µ)

]
dx

=
1

2
log(2π det(Σ)) +

1

2
E[(X − µ)>Σ−1(X − µ)]

=
1

2
log(2π det(Σ)) +

d

2
.

3
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14.3 Maximizing Entropy

The maximum entropy principle, proposed by Jaynes in the 1950s (see Jaynes [91]), originated in
statistical mechanics, where Jaynes showed that (in a sense) entropy in statistical mechanics and
information theory were equivalent. The maximum entropy principle is this: given some constraints
(prior information) about a distribution P , we consider all probability distributions satisfying said
constraints. Then to encode our prior information while being as “objective” or “agnostic” as
possible (essentially being as uncertain as possible), we should choose the distribution P satisfying
the constraints to maximize the Shannon entropy.

While there are many arguments for and against the maximum entropy principle, we shall not
dwell on them here, instead showing how maximizing entropy naturally gives rise to exponential
family models. We will later see connections to Bayesian and minimax procedures. The one thing
that we must consider, about which we will be quite explicit, is that the base measure µ is essential
to all our derivations: it radically effects the distributions P we consider.

14.3.1 The maximum entropy problem

We begin by considering linear (mean-value) constraints on our distributions. In this case, we are
given a function φ : X → Rd and vector α ∈ Rd, we wish to solve

maximizeH(P ) subject to EP [φ(X)] = α (14.3.1)

over all distributions P having densities with respect to the base measure µ, that is, we have the
(equivalent) absolute continuity condition P � µ. Rewriting problem (14.3.1), we see that it is
equivalent to

maximize −
∫
p(x) log p(x)dµ(x)

subject to

∫
p(x)φi(x)dµ(x) = αi, p(x) ≥ 0 for x ∈ X ,

∫
p(x)dµ(x) = 1.

Let
P lin
α := {P � µ : EP [φ(X)] = α}

be distributions with densities w.r.t. µ satisfying the expectation (linear) constraint E[φ(X)] = α.
We then obtain the following theorem.

Theorem 14.7. For θ ∈ Rd, let Pθ have density

pθ(x) = exp(〈θ, φ(x)〉 −A(θ)), A(θ) = log

∫
exp(〈θ, φ(x)〉)dµ(x),

with respect to the measure µ. If EPθ [φ(X)] = α, then Pθ maximizes H(P ) over P lin
α ; moreover,

the distribution Pθ is unique.

Proof We first give a heuristic derivation—which is not completely rigorous—and then check to
verify that our result is exact. First, we write a Lagrangian for the problem (14.3.1). Introducing
Lagrange multipliers λ(x) ≥ 0 for the constraint p(x) ≥ 0, θ0 ∈ R for the normalization constraint
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that P (X ) = 1, and θi for the constraints that EP [φi(X)] = αi, we obtain the following Lagrangian:

L(p, θ, θ0, λ) =

∫
p(x) log p(x)dµ(x) +

d∑
i=1

θi

(
αi −

∫
p(x)φi(x)dµ(x)

)
+ θ0

(∫
p(x)dµ(x)− 1

)
−
∫
λ(x)p(x)dµ(x).

Now, heuristically treating the density p = [p(x)]x∈X as a finite-dimensional vector (in the case
that X is finite, this is completely rigorous), we take derivatives and obtain

∂

∂p(x)
L(p, θ, θ0, λ) = 1 + log p(x)−

d∑
i=1

θiφi(x) + θ0 − λ(x) = 1 + log p(x)− 〈θ, φ(x)〉+ θ0 − λ(x).

To find the minimizing p for the Lagrangian (the function is convex in p), we set this equal to zero
to find that

p(x) = exp (〈θ, φ(x)〉 − 1− θ0 − λ(x)) .

Now, we note that with this setting, we always have p(x) > 0, so that the constraint p(x) ≥ 0
is unnecessary and (by complementary slackness) we have λ(x) = 0. In particular, by taking
θ0 = −1+A(θ) = −1+log

∫
exp(〈θ, φ(x)〉)dµ(x), we have that (according to our heuristic derivation)

the optimal density p should have the form

pθ(x) = exp (〈θ, φ(x)〉 −A(θ)) .

So we see the form of distribution we would like to have.
Let us now consider any other distribution P ∈ P lin

α , and assume that we have some θ satisfying
EPθ [φ(X)] = α. In this case, we may expand the entropy H(P ) as

H(P ) = −
∫
p log pdµ = −

∫
p log

p

pθ
dµ−

∫
p log pθdµ

= −Dkl (P ||Pθ)−
∫
p(x)[〈θ, φ(x)〉 −A(θ)]dµ(x)

(?)
= −Dkl (P ||Pθ)−

∫
pθ(x)[〈θ, φ(x)〉 −A(θ)]dµ(x)

= −Dkl (P ||Pθ)−H(Pθ),

where in the step (?) we have used the fact that
∫
p(x)φ(x)dµ(x) =

∫
pθ(x)φ(x)dµ(x) = α. As

Dkl (P ||Pθ) > 0 unless P = Pθ, we have shown that Pθ is the unique distribution maximizing the
entropy, as desired.

14.3.2 Examples of maximum entropy

We now give three examples of maximum entropy, showing how the choice of the base measure
µ strongly effects the resulting maximum entropy distribution. For all three, we assume that the
space X = R is the real line. We consider maximizing the entropy over all distributions P satisfying

EP [X2] = 1.
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Example 14.8: Assume that the base measure µ is counting measure on the support {−1, 1},
so that µ({−1}) = µ({1}) = 1. Then the maximum entropy distribution is given by P (X =
x) = 1

2 for x ∈ {−1, 1}. 3

Example 14.9: Assume that the base measure µ is Lebesgue measure on X = R, so that
µ([a, b]) = b − a for b ≥ a. Then by Theorem 14.7, we have that the maximum entropy
distribution has the form pθ(x) ∝ exp(−θx2); recognizing the normal, we see that the optimal
distribution is simply N(0, 1). 3

Example 14.10: Assume that the base measure µ is counting measure on the integers Z =
{. . . ,−2,−1, 0, 1, . . .}. Then Theorem 14.7 shows that the optimal distribution is a discrete
version of the normal: we have pθ(x) ∝ exp(−θx2) for x ∈ Z. That is, we choose θ > 0 so that
the distribution pθ(x) = exp(−θx2)/

∑∞
j=−∞ exp(−θj2) has variance 1. 3

14.3.3 Generalization to inequality constraints

It is possible to generalize Theorem 14.7 in a variety of ways. In this section, we show how
to generalize the theorem to general (finite-dimensional) convex cone constraints (cf. Boyd and
Vandenberghe [31, Chapter 5]). To remind the reader, we say a set C is a convex cone if for any two
points x, y ∈ C, we have λx+ (1− λ)y ∈ C for all λ ∈ [0, 1], and C is closed under positive scaling:
x ∈ C implies that tx ∈ C for all t ≥ 0. While this level of generality may seem a bit extreme, it
does give some nice results. In most cases, we will always use one of the following two standard
examples of cones (the positive orthant and the semi-definite cone):

i. The orthant. Take C = Rd+ = {x ∈ Rd : xj ≥ 0, j = 1, . . . , d}. Then clearly C is convex and
closed under positive scaling.

ii. The semidefinite cone. Take C = {X ∈ Rd×d : X = X>, X � 0}, where a matrix X � 0 means
that a>Xa ≥ 0 for all vectors a. Then we have that C is convex and closed under positive
scaling as well.

Given a convex cone C, we associate a cone ordering � with the cone and say that for two
elements x, y ∈ C, we have x � y if x− y � 0, that is, x− y ∈ C. In the orthant case, this simply
means that x is component-wise larger than y. For a given inner product 〈·, ·〉, we define the dual
cone

C∗ := {y : 〈y, x〉 ≥ 0 for all x ∈ C} .

For the standard (Euclidean) inner product, the positive orthant is thus self-dual, and similarly the
semidefinite cone is also self-dual. For a vector y, we write y �∗ 0 if y ∈ C∗ is in the dual cone.

With this generality in mind, we may consider the following linearly constrained maximum
entropy problem, which is predicated on a particular cone C with associated cone ordering � and
a function ψ mapping into the ambient space in which C lies:

maximize H(P ) subject to EP [φ(X)] = α, EP [ψ(X)] � β, (14.3.2)

where the base measure µ is implicit. We denote the family of distributions (with densities w.r.t.
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µ) satisfying the two above constraints by P lin
α,β. Equivalently, we wish to solve

maximize −
∫
p(x) log p(x)dµ(x)

subject to

∫
p(x)φ(x)dµ(x) = α,

∫
p(x)ψ(x)dµ(x) � β,

p(x) ≥ 0 for x ∈ X ,
∫
p(x)dµ(x) = 1.

We then obtain the following theorem:

Theorem 14.11. For θ ∈ Rd and K ∈ C∗, the dual cone to C, let Pθ,K have density

pθ,K(x) = exp (〈θ, φ(x)〉 − 〈K,ψ(x)〉 −A(θ,K)) , A(θ,K) = log

∫
exp(〈θ, φ(x)〉−〈K,ψ(x)〉)dµ(x),

with respect to the measure µ. If

EPθ,K [φ(X)] = α and EPθ,K [ψ(X)] = β,

then Pθ,K maximizes H(P ) over P lin
α,β. Moreover, the distribution Pθ,K is unique.

We make a few remarks in passing before proving the theorem. First, we note that we must assume
both equalities are attained for the theorem to hold. We may also present an example.

Example 14.12 (Normal distributions maximize entropy subject to covariance constraints): Sup-
pose that the cone C is the positive semidefinite cone in Rd×d, that α = 0, that we use the
Lebesgue measure as our base measure, and that ψ(x) = xx> ∈ Rd×d. Let us fix β = Σ for
some positive definite matrix Σ. This gives us the problem

maximize −
∫
p(x) log p(x)dx subject to EP [XX>] � Σ

Then we have by Theorem 14.11 that if we can find a density pK(x) ∝ exp(−〈K,xx>〉) =
exp(−x>Kx) satisfying E[XX>] = Σ, this distribution maximizes the entropy. But this is not
hard: simply take the normal distribution N(0,Σ), which gives K = 1

2Σ−1. 3

Now we provide the proof of Theorem 14.11.
Proof We can provide a heuristic derivation of the form of pθ,K identically as in the proof of Theo-
rem 14.7, where we also introduce the dual variable K ∈ C∗ for the constraint

∫
p(x)ψ(x)dµ(x) � β.

Rather than going through this, however, we simply show that the distribution Pθ,K maximizes
H(P ). Indeed, we have for any P ∈ P lin

α,β that

H(P ) = −
∫
p(x) log p(x)dµ(x) = −

∫
p(x) log

p(x)

pθ,K(x)
dµ(x)−

∫
p(x) log pθ,K(x)dµ(x)

= −Dkl (P ||Pθ,K)−
∫
p(x) [〈θ, φ(x)〉 − 〈K,ψ(x)〉 −A(θ,K)] dµ(x)

≤ −Dkl (P ||Pθ,K)− [〈θ, α〉 − 〈K,β〉 −A(θ,K)] ,

where the inequality follows because K �∗ 0 so that if E[ψ(X)] � β, we have

〈K,E[ψ(X)− β]〉 ≤ 〈K, 0〉 = 0 or 〈K,E[ψ(X)]〉 ≤ 〈K,β〉.
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Now, we note that
∫
pθ,K(x)φ(x)dµ(x) = α and

∫
pθ,K(x)ψ(x)dµ(x) = β by assumption. Then we

have

H(P ) ≤ −Dkl (P ||Pθ,K)− [〈θ, α〉 − 〈K,β〉 −A(θ,K)]

= −Dkl (P ||Pθ,K)−
∫
pθ,K(x) [〈θ, φ(x)〉 − 〈K,ψ(x)〉 −A(θ,K)] dµ(x)

= −Dkl (P ||Pθ,K)−
∫
pθ,K(x) log pθ,K(x)dµ(x) = −Dkl (P ||Pθ,K) +H(Pθ,K).

As Dkl (P ||Pθ,K) > 0 unless P = Pθ,K , this gives the result.

14.4 Exercises

Question 14.1: Prove that the log determinant function is concave over the positive semidefinite
matrices. That is, show that for X,Y ∈ Rd×d satisfying X � 0 and Y � 0, we have

log det(λX + (1− λ)Y ) ≥ λ log det(X) + (1− λ) log det(Y )

for any λ ∈ [0, 1]. Hint: think about log-partition functions.
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Chapter 15

Robustness, duality, maximum
entropy, and exponential families

In this lecture, we continue our study of exponential families, but now we investigate their properties
in somewhat more depth, showing how exponential family models provide a natural robustness
against model mis-specification, enjoy natural projection properties, and arise in other settings.

15.1 The existence of maximum entropy distributions

As in the previous chapter of these notes, we again consider exponential family models. For
simplicity throughout this chapter, and with essentially no loss of generality, we assume that all of
our exponential family distributions have (standard) densities. Moreover, we assume there is some
fixed density (or, more generally, an arbitrary function) p satisfying p(x) ≥ 0 and for which

pθ(x) = p(x) exp(〈θ, φ(x)〉 −A(θ)), (15.1.1)

where the log-partition function or cumulant generating function A(θ) = log
∫
p(x) exp(〈θ, φ(x)〉)dx

as usual, and φ is the usual vector of sufficient statistics. In the previous chapter, we saw that if we
restricted consideration to distributions satisfying the mean-value (linear) constraints of the form

P lin
α :=

{
Q : q(x) = p(x)f(x), where f ≥ 0 and

∫
q(x)φ(x)dx = α,

∫
q(x)dx = 1

}
,

then the distribution with density pθ(x) = p(x) exp(〈θ, φ(x)〉 − A(θ)) uniquely maximized the
(Shannon) entropy over the family P lin

α if we could find any θ satisfying EPθ [φ(X)] = α. (Recall
Theorem 14.7.) Now, of course, we must ask: does this actually happen? For if it does not, then
all of this work is for naught.

Luckily for us, the answer is that we often find ourselves in the case that such results occur.
Indeed, it is possible to show that, except for pathological cases, we are essentially always able to
find such a solution. To that end, define the mean space

Mφ :=
{
α ∈ Rd : ∃Q s.t. q(x) = f(x)p(x), f ≥ 0, and

∫
q(x)φ(x)dx = α

}
Then we have the following result, which is well-known in the literature on exponential family
modeling; we refer to Wainwright and Jordan [135, Proposition 3.2 and Theorem 3.3] for the proof.
In the statement of the theorem, we recall that the domain domA of the log partition function is
defined as those points θ for which the integral

∫
p(x) exp(〈θ, φ(x)〉)dx <∞.
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Theorem 15.1. Assume that there exists some point θ0 ∈ int domA, where domA := {θ ∈
Rd : A(θ) < ∞}. Then for any α in the interior of Mφ, there exists some θ = θ(α) such that
EPθ [φ(X)] = α.

Using tools from convex analysis, it is possible to extend this result to the case that domA has no
interior but only a relative interior, and similarly for Mφ (see Hiriart-Urruty and Lemaréchal [84]
or Rockafellar [122] for discussions of interior and relative interior). Moreover, it is also possible to
show that for any α ∈Mφ (not necessarily the interior), there exists a sequence θ1, θ2, . . . satisfying
the limiting guarantee limn EPθn [φ(X)] = α. Regardless, we have our desired result: if P lin is not
empty, maximum entropy distributions exist and exponential family models attain these maximum
entropy solutions.

15.2 I-projections and maximum likelihood

We first show one variant of the robustness of exponential family distributions by showing that
they are (roughly) projections onto constrained families of distributions, and that they arise nat-
urally in the context of maximum likelihood estimation. First, suppose that we have a family Π
of distributions and some fixed distribution P (this last assumption of a fixed distribution P is
not completely essential, but it simplifies our derivation). Then the I-Projection (for information
projection) of the distribution P onto the family Π is

P ∗ := argmin
Q∈Π

Dkl (Q||P ) , (15.2.1)

when such a distribution exists. (In nice cases, it does.)
Perhaps unsurprisingly, given our derivations with maximum entropy distributions and expo-

nential family models, we have the next proposition. The proposition shows that I-Projection is
essentially the same as maximum entropy, and the projection of a distribution P onto a family of
linearly constrained distributions yields exponential family distributions.

Proposition 15.2. Suppose that Π = P lin
α . If pθ(x) = p(x) exp(〈θ, φ(x)〉−A(θ)) satisfies EPθ [φ(X)] =

α, then pθ solves the I-projection problem (15.2.1). Moreover we have (the Pythagorean identity)

Dkl (Q||P ) = Dkl (Pθ||P ) +Dkl (Q||Pθ)

for Q ∈ P lin
α .

Proof Our proof is to perform an expansion of the KL-divergence that is completely parallel to
that we performed in the proof of Theorem 14.7. Indeed, we have

Dkl (Q||P ) =

∫
q(x) log

q(x)

p(x)
dx

=

∫
q(x) log

pθ(x)

p(x)
dx+

∫
q(x) log

q(x)

pθ(x)
dx

=

∫
q(x)[〈θ, φ(x)〉 −A(θ)]dx+Dkl (Q||Pθ)

(?)
=

∫
pθ(x)[〈θ, φ(x)〉 −A(θ)]dx+Dkl (Q||Pθ)

=

∫
pθ(x) log

pθ(x)

p(x)
+Dkl (Q||Pθ) ,
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where equality (?) follows by assumption that EPθ [φ(X)] = α.

Now we consider maximum likelihood estimation, showing that—in a completely handwavy
fashion—approximates I-projection. First, suppose that we have an exponential family {Pθ}θ∈Θ of
distributions, and suppose that the data comes from a true distribution P . Then to maximizing
the likelihood of the data is equivalent to maximizing the log likelihood, which, in the population
case, gives us the following sequence of equivalences:

maximize EP [log pθ(X)] ≡ minimize EP [log
1

pθ(X)
]

≡ minimize EP
[

log
p(X)

pθ(X)

]
+H(P )

≡ minimize
θ

Dkl (P ||Pθ) ,

so that maximum likelihood is essentially a different type of projection.
Now, we also consider the empirical variant of maximum likelihood, where we maximize the

likelihood of a given sample X1, . . . , Xn. In particular, we may study the structure of maximum like-
lihood exponential family estimators, and we see that they correspond to simple moment matching
in exponential families. Indeed, consider the sample-based maximum likelihood problem of solving

maximize
θ

n∏
i=1

pθ(Xi) ≡ maximize
1

n

n∑
i=1

log pθ(Xi), (15.2.2)

where as usual we assume the exponential family model pθ(x) = p(x) exp(〈θ, φ(x)〉 − A(θ)). We
have the following result.

Proposition 15.3. Let α̂ = 1
n

∑n
i=1 φ(Xi). Then the maximum likelihood solution is given by any

θ such that EPθ [φ(X)] = α̂.

Proof The proof follows immediately upon taking derivatives. We define the empirical negative
log likelihood (the empirical risk) as

R̂n(θ) := − 1

n

n∑
i=1

log pθ(Xi) = − 1

n

n∑
i=1

〈θ, φ(Xi)〉+A(θ)− 1

n

n∑
i=1

log p(Xi),

which is convex as θ 7→ A(θ) is convex (recall Proposition 14.4). Taking derivatives, we have

∇θR̂n(θ) = − 1

n

n∑
i=1

φ(Xi) +∇A(θ)

= − 1

n

n∑
i=1

φ(Xi) +
1∫

p(x) exp(〈θ, φ(x)〉)dx

∫
φ(x)p(x) exp(〈θ, φ(x)〉)dx

= − 1

n

n∑
i=1

φ(Xi) + EPθ [φ(X)].

In particular, finding any θ such that ∇A(θ) = E
P̂n

[φ(X)] gives the result.
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As a consequence of the result, we have the following rough equivalences tying together the
preceding material. In short, maximum entropy subject to (linear) empirical moment constraints
(Theorem 14.7) is equivalent to maximum likelihood estimation in exponential families (Proposi-
tion 15.3), which is equivalent to I-projection of a fixed base distribution onto a linearly constrained
family of distributions (Proposition 15.2).

15.3 Basics of minimax game playing with log loss

The final set of problems we consider in which exponential families make a natural appearance are
in so-called minimax games under the log loss. In particular, we consider the following general
formulation of a two-player minimax game. First, we choose a distribution Q on a set X (with
density q). Then nature (or our adversary) chooses a distribution P ∈ P on the set X , where P is
a collection of distributions on X , so we suffer loss

sup
P∈P

EP [− log q(X)] = sup
P∈P

∫
p(x) log

1

q(x)
dx. (15.3.1)

In particular, we would like to solve the minimax problem

minimize
Q

sup
P∈P

E[− log q(X)].

To motivate this abstract setting we give two examples, the first abstract and the second somewhat
more concrete.

Example 15.4: Suppose that receive n random variables Xi
iid∼ P ; in this case, we have the

sequential prediction loss

EP [− log q(Xn
1 )] =

n∑
i=1

EP
[
log

1

q(Xi | Xi−1
1 )

]
,

which corresponds to predicting Xi given Xi−1
1 as well as possible, when the Xi follow an

(unknown or adversarially chosen) distribution P . 3

Example 15.5 (Coding): Expanding on the preceding example, suppose that the set X is
finite, and we wish to encode X into {0, 1}-valued sequences using as few bits as possible. In
this case, the Kraft inequality (recall Theorem 13.2) tells us that if C : X → {0, 1}∗ is an
uniquely decodable code, and `C(x) denotes the length of the encoding for the symbol x ∈ X ,
then ∑

x

2−`C(x) ≤ 1.

Conversely, given any length function ` : X → N satisfying
∑

x 2−`(x) ≤ 1, there exists an
instantaneous (prefix) code C with the given length function. Thus, if we define the p.m.f.
qC(x) = 2−`C(x)/

∑
x 2−`C(x), we have

− log2 qC(xn1 ) =
n∑
i=1

[
`C(xi) + log

∑
x

2−`C(x)

]
≤

n∑
i=1

`C(xi).
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In particular, we have a coding game where we attempt to choose a distributionQ (or sequential
coding scheme C) that has as small an expected length as possible, uniformly over distributions
P . (The field of universal coding studies such questions in depth; see Tsachy Weissman’s course
EE376b.) 3

We now show how the minimax game (15.3.1) naturally gives rise to exponential family models,
so that exponential family distributions are so-called robust Bayes procedures (cf. Grünwald and
Dawid [76]). Specifically, we say that Q is a robust Bayes procedure for the class P of distributions
if it minimizes the supremum risk (15.3.1) taken over the family P; that is, it is uniformly good for
all distributions P ∈ P. If we restrict our class P to be a linearly constrained family of distributions,
then we see that the exponential family distributions are natural robust Bayes procedures: they
uniquely solve the minimax game. More concretely, assume that P = P lin

α and that Pθ denotes the
exponential family distribution with density pθ(x) = p(x) exp(〈θ, φ(x)〉 − A(θ)), where p denotes
the base density. We have the following.

Proposition 15.6. If EPθ [φ(X)] = α, then

inf
Q

sup
P∈P lin

α

EP [− log q(X)] = sup
P∈P lin

α

EP [− log pθ(X)] = sup
P∈P lin

α

inf
Q

EP [− log q(X)].

Proof This is a standard saddle-point argument (cf. [122, 84, 31]). First, note that

sup
P∈P lin

α

EP [− log pθ(X)] = sup
P∈P lin

α

EP [−〈φ(X), θ〉+A(θ)]

= −〈α, θ〉+A(θ) = EPθ [−〈θ, φ(X)〉+A(θ)] = H(Pθ),

where H denotes the Shannon entropy, for any distribution P ∈ P lin
α . Moreover, for any Q 6= Pθ,

we have

sup
P

EP [− log q(X)] ≥ EPθ [− log q(X)] > EPθ [− log pθ(X)] = H(Pθ),

where the inequality follows because Dkl (Pθ||Q) =
∫
pθ(x) log pθ(x)

q(x) dx > 0. This shows the first
equality in the proposition.

For the second equality, note that

inf
Q

EP [− log q(X)] = inf
Q

EP
[

log
p(X)

q(X)

]
︸ ︷︷ ︸

=0

−EP [log p(x)] = H(P ).

But we know from our standard maximum entropy results (Theorem 14.7) that Pθ maximizes the
entropy over P lin

α , that is, supP∈P lin
α
H(P ) = H(Pθ).

In short: maximum entropy is equivalent to robust prediction procedures for linear families of
distributions P lin

α , which is equivalent to maximum likelihood in exponential families, which in turn
is equivalent to I-projection.
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Chapter 16

Fisher Information

Having explored the definitions associated with exponential families and their robustness properties,
we now turn to a study of somewhat more general parameterized distributions, developing connec-
tions between divergence measures and other geometric ideas such as the Fisher information. After
this, we illustrate a few consequences of Fisher information for optimal estimators, which gives a
small taste of the deep connections between information geometry, Fisher information, exponential
family models. In the coming chapters, we show how Fisher information measures come to play a
central role in sequential (universal) prediction problems.

16.1 Fisher information: definitions and examples

We begin by defining the Fisher information. Let {Pθ}θ∈Θ denote a parametric family of distribu-
tions on a space X , each where θ ∈ Θ ⊂ Rd indexes the distribution. Throughout this lecture and
the next, we assume (with no real loss of generality) that each Pθ has a density given by pθ. Then
the Fisher information associated with the model is the matrix given by

Iθ := Eθ
[
∇θ log pθ(X)∇ log pθ(X)>

]
= Eθ[ ˙̀

θ
˙̀>
θ ], (16.1.1)

where the score function ˙̀
θ = ∇θ log pθ(x) is the gradient of the log likelihood at θ (implicitly

depending on X) and the expectation Eθ denotes expectation taken with respect to Pθ. Intuitively,
the Fisher information captures the variability of the gradient ∇ log pθ; in a family of distributions
for which the score function ˙̀

θ has high variability, we intuitively expect estimation of the parameter
θ to be easier—different θ change the behavior of ˙̀

θ—though the log-likelihood functional θ 7→
Eθ0 [log pθ(X)] varies more in θ.

Under suitable smoothness conditions on the densities pθ (roughly, that derivatives pass through
expectations; see Remark 16.1 at the end of this chapter), there are a variety of alternate definitions
of Fisher information. These smoothness conditions hold for exponential families, so at least in
the exponential family case, everything in this chapter is rigorous. (We note in passing that there
are more general definitions of Fisher information for more general families under quadratic mean
differentiability; see, for example, van der Vaart [133].) First, we note that the score function has
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mean zero under Pθ: we have

Eθ[ ˙̀
θ] =

∫
pθ(x)∇θ log pθ(x)dx =

∫
∇pθ(x)

pθ(x)
pθ(x)dx

=

∫
∇pθ(x)dx

(?)
= ∇

∫
pθ(x)dx = ∇1 = 0,

where in equality (?) we have assumed that integration and derivation may be exchanged. Under
similar conditions, we thus attain an alternate definition of Fisher information as the negative
expected hessian of log pθ(X). Indeed,

∇2 log pθ(x) =
∇2pθ(x)

pθ(x)
− ∇pθ(x)∇pθ(x)>

pθ(x)2
=
∇2pθ(x)

pθ(x)
− ˙̀

θ
˙̀>
θ ,

so we have that the Fisher information is equal to

Iθ = Eθ[ ˙̀
θ

˙̀>
θ ] = −

∫
pθ(x)∇2 log pθ(x)dx+

∫
∇2pθ(x)dx

= −E[∇2 log pθ(x)] +∇2

∫
pθ(x)dx︸ ︷︷ ︸

=1

= −E[∇2 log pθ(x)]. (16.1.2)

Summarizing, we have that

Iθ = Eθ[ ˙̀
θ

˙̀
θ] = −Eθ[∇2 log pθ(X)].

This representation also makes clear the additional fact that, if we have n i.i.d. observations from the
model Pθ, then the information content similarly grows linearly, as log pθ(X

n
1 ) =

∑n
i=1 log pθ(Xi).

We now give two examples of Fisher information, the first somewhat abstract and the second
more concrete.

Example 16.1 (Canonical exponential family): In a canonical exponential family model, we
have log pθ(x) = 〈θ, φ(x)〉 − A(θ), where φ is the sufficient statistic and A is the log-partition
function. Because ˙̀

θ = φ(x)−∇A(θ) and ∇2 log pθ(x) = −∇2A(θ) is a constant, we obtain

Iθ = ∇2A(θ).

3

Example 16.2 (Two parameterizations of a Bernoulli): In the canonical parameterization of
a Bernoulli as an exponential family model (Example 14.1), we had pθ(x) = exp(θx−log(1+eθ))

for x ∈ {0, 1}, so by the preceding example the associated Fisher information is eθ

1+eθ
1

1+eθ
. If

we make the change of variables p = Pθ(X = 1) = eθ/(1 + eθ), or θ = log p
1−p , we have

Iθ = p(1 − p). On the other hand, if P (X = x) = px(1 − p)1−x for p ∈ [0, 1], the standard
formulation of the Bernoulli, then ∇ logP (X = x) = x

p −
1−x
1−p , so that

Ip = Ep

[(
X

p
− 1−X

1− p

)2
]

=
1

p
+

1

1− p
=

1

p(1− p)
.

That is, the parameterization can change the Fisher information. 3
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16.2 Estimation and Fisher information: elementary considera-
tions

The Fisher information has intimate connections to estimation, both in terms of classical estimation
and the information games that we discuss subsequently. As a motivating calculation, we consider

estimation of the mean of a Bernoulli(p) random variable, where p ∈ [0, 1], from a sample Xn
1

iid∼
Bernoulli(p). The sample mean p̂ satisfies

E[(p̂− p)2] =
1

n
Var(X) =

p(1− p)
n

=
1

Ip
· 1

n
,

where Ip is the Fisher information for the single observation Bernoulli(p) family as in Example 16.2.
In fact, this inverse dependence on Fisher information is unavoidable, as made clear by the Cramér
Rao Bound, which provides lower bounds on the mean squared error of all unbiased estimators.

Proposition 16.3 (Cramér Rao Bound). Let φ : Rd → R be an arbitrary differentiable function
and assume that the random function (estimator) T is unbiased for φ(θ) under Pθ. Then

Var(T ) ≥ ∇φ(θ)>I−1
θ ∇φ(θ).

As an immediate corollary to Proposition 16.3, we may take φ(θ) = 〈λ, θ〉 for λ ∈ Rd. Then
varying λ over all of Rd, and we obtain that for any unbiased estimator T for the parameter θ ∈ Rd,
we have Var(〈λ, T 〉) ≥ λ>I−1

θ λ. That is, we have

Corollary 16.4. Let T be unbiased for the parameter θ under the distribution Pθ. Then the
covariance of T has lower bound

Cov(T ) � I−1
θ .

In fact, the Cramér-Rao bound and Corollary 16.4 hold, in an asymptotic sense, for substantially
more general settings (without the unbiasedness requirement). For example, see the books of
van der Vaart [133] or Le Cam and Yang [102, Chapters 6 & 7], which show that under appropriate
conditions (known variously as quadratic mean differentiability and local asymptotic normality)
that no estimator can have smaller mean squared error than Fisher information in any uniform
sense.

We now prove the proposition, where, as usual, we assume that it is possible to exchange
differentiation and integration.
Proof Throughout this proof, all expectations and variances are computed with respect to Pθ.
The idea of the proof is to choose λ ∈ Rd to minimize the variance

Var(T − 〈λ, ˙̀
θ〉) ≥ 0,

then use this λ to provide a lower bound on Var(T ).
To that end, let ˙̀

θ,j = ∂
∂θj

log pθ(X) denote the jth component of the score vector. Because

Eθ[ ˙̀
θ] = 0, we have the covariance equality

Cov(T − φ(θ), ˙̀
θ,j) = E[(T − φ(θ)) ˙̀

θ,j ] = E[T ˙̀
θ,j ] =

∫
T (x)

∂
∂θj
pθ(x)

pθ(x)
pθ(x)dx

=
∂

∂θj

∫
T (x)pθ(x)dx =

∂

∂θj
φ(θ),
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where in the final step we used that T is unbiased for φ(θ). Using the preceding equality,

Var(T − 〈λ, ˙̀
θ〉) = Var(T ) + λ>Iθλ− 2E[(T − φ(θ))〈λ, ˙̀

θ〉] = Var(T ) + λ>Iθλ− 2〈λ,∇φ(θ)〉.

Taking λ = I−1
θ ∇φ(θ) gives 0 ≤ Var(T − 〈λ, ˙̀

θ〉) = Var(T ) − ∇φ(θ)>I−1
θ ∇φ(θ), and rearranging

gives the result.

16.3 Connections between Fisher information and divergence mea-
sures

By making connections between Fisher information and certain divergence measures, such as KL-
divergence and mutual (Shannon) information, we gain additional insights into the structure of
distributions, as well as optimal estimation and encoding procedures. As a consequence of the
asymptotic expansions we make here, we see that estimation of 1-dimensional parameters is gov-
erned (essentially) by moduli of continuity of the loss function with respect to the metric induced
by Fisher information; in short, Fisher information is an unavoidable quantity in estimation. We
motivate our subsequent development with the following example.

Example 16.5 (Divergences in exponential families): Consider the exponential family density
pθ(x) = h(x) exp(〈θ, φ(x)〉 −A(θ)). Then a straightforward calculation implies that for any θ1

and θ2, the KL-divergence between distributions Pθ1 and Pθ2 is

Dkl (Pθ1 ||Pθ2) = A(θ2)−A(θ1)− 〈∇A(θ1), θ2 − θ1〉.

That is, the divergence is simply the difference between A(θ2) and its first order expansion
around θ1. This suggests that we may approximate the KL-divergence via the quadratic re-
mainder in the first order expansion. Indeed, as A is infinitely differentiable (it is an exponential
family model), the Taylor expansion becomes

Dkl (Pθ1 ||Pθ2) =
1

2
〈θ1 − θ2,∇2A(θ1)(θ1 − θ2)〉+O(‖θ1 − θ2‖3)

=
1

2
〈θ1 − θ2, Iθ1(θ1 − θ2)〉+O(‖θ1 − θ2‖3).

3

In particular, KL-divergence is roughly quadratic for exponential family models, where the
quadratic form is given by the Fisher information matrix. We also remark in passing that for a
convex function f , the Bregman divergence (associated with f) between points x and y is given
by Bf (x, y) = f(x) − f(y) − 〈∇f(y), x − y〉; such divergences are common in convex analysis,
optimization, and differential geometry. Making such connections deeper and more rigorous is the
goal of the field of information geometry (see the book of Amari and Nagaoka [5] for more).

We can generalize this example substantially under appropriate smoothness conditions. Indeed,
we have

Proposition 16.6. For appropriately smooth families of distributions {Pθ}θ∈Θ,

Dkl (Pθ1 ||Pθ2) =
1

2
〈θ1 − θ2, Iθ1(θ1 − θ2)〉+ o(‖θ1 − θ2‖2). (16.3.1)
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We only sketch the proof, as making it fully rigorous requires measure-theoretic arguments and
Lebesgue’s dominated convergence theorem.
Sketch of Proof By a Taylor expansion of the log density log pθ2(x) about θ1, we have

log pθ2(x) = log pθ1(x) + 〈∇ log pθ1(x), θ1 − θ2〉

+
1

2
(θ1 − θ2)>∇2 log pθ1(x)(θ1 − θ2) +R(θ1, θ2, x),

where R(θ1, θ2, x) = Ox(‖θ1 − θ2‖3) is the remainder term, where Ox denotes a hidden dependence
on x. Taking expectations and assuming that we can interchange differentiation and expectation
appropriately, we have

Eθ1 [log pθ2(X)] = Eθ1 [log pθ1(X)] + 〈Eθ1 [ ˙̀
θ1 ], θ1 − θ2〉

+
1

2
(θ1 − θ2)>Eθ1 [∇2 log pθ1(X)](θ1 − θ2) + Eθ1 [R(θ1, θ2, X)]

= Eθ1 [log pθ1(X)]− 1

2
(θ1 − θ2)>Iθ1(θ1 − θ2) + o(‖θ1 − θ2‖2),

where we have assumed that the O(‖θ1 − θ2‖3) remainder is uniform enough in X that E[R] =
o(‖θ1 − θ2‖2) and used that the score function ˙̀

θ is mean zero under Pθ.

We may use Proposition 16.6 to give a somewhat more general version of the Cramér-Rao
bound (Proposition 16.3) that applies to more general (sufficiently smooth) estimation problems.
Indeed, we will show that Le Cam’s method (recall Chapter 7.3) is (roughly) performing a type of
discrete second-order approximation to the KL-divergence, then using this to provide lower bounds.
More concretely, suppose we are attempting to estimate a parameter θ parameterizing the family
P = {Pθ}θ∈Θ, and assume that Θ ⊂ Rd and θ0 ∈ int Θ. Consider the minimax rate of estimation
of θ0 in a neighborhood around θ0; that is, consider

inf
θ̂

sup
θ=θ0+v∈Θ

Eθ[‖θ̂(Xn
1 )− θ‖2],

where the observations Xi are drawn i.i.d. Pθ. Fixing v ∈ Rd and setting θ = θ0 + δv for some
δ > 0, Le Cam’s method (7.3.3) then implies that

inf
θ̂

max
θ∈{θ0,θ+δv}

Eθ[‖θ̂(Xn
1 )− θ‖2] ≥ δ2 ‖v‖2

8

[
1−

∥∥Pnθ0 − Pnθ0+δv

∥∥
TV

]
.

Using Pinsker’s inequality that 2 ‖P −Q‖2TV ≤ Dkl (P ||Q) and the asymptotic quadratic approxi-
mation (16.3.1), we have∥∥Pnθ0 − Pnθ0+δv

∥∥
TV
≤
√
n

2
Dkl (Pθ0 ||Pθ0+δv) =

√
n

2

(
δ2v>Iθ0v + o(δ2 ‖v‖2)

) 1
2
.

By taking δ2 = (nv>Iθ0v)−1, for large enough v and n we know that θ0 + δv ∈ int Θ (so that the
distribution Pθ0+δv exists), and for large n, the remainder term o(δ2 ‖v‖2) becomes negligible. Thus
we obtain

inf
θ̂

max
θ∈{θ0,θ+δv}

Eθ[‖θ̂(Xn
1 )− θ‖2] &

δ2 ‖v‖2

16
=

1

16

‖v‖2

nv>Iθ0v
. (16.3.2)

In particular, in one-dimension, inequality (16.3.2) implies a result generalizing the Cramér-Rao
bound. We have the following asymptotic local minimax result:
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Corollary 16.7. Let P = {Pθ}θ∈Θ, where Θ ⊂ R, be a family of distributions satisfying the
quadratic approximation condition of Proposition 16.6. Then there exists a constant c > 0 such
that

lim
v→∞

lim
n→∞

inf
θ̂n

sup
θ:|θ−θ0|≤v/

√
n

Eθ
[
(θ̂n(Xn

1 )− θ)2
]
≥ c 1

n
I−1
θ0
.

Written differently (and with minor extension), Corollary 16.7 gives a lower bound based on a
local modulus of continuity of the loss function with respect to the metric induced by the Fisher
information. Indeed, suppose we wish to estimate a parameter θ in the neighborhood of θ0 (where
the neighborhood size decreases as 1/

√
n) according to some loss function ` : Θ×Θ→ R. Then if

we define the modulus of continuity of ` with respect to the Fisher information metric as

ω`(δ, θ0) := sup
v:‖v‖≤1

`(θ0, θ0 + δv)

δ2v>Iθ0v
,

the combination of Corollary 16.7 and inequality (16.3.2) shows that the local minimax rate of
estimating Eθ[`(θ̂n, θ)] for θ near θ0 must be at least ω`(n

−1/2, θ0). For more on connections between
moduli of continuity and estimation, see, for example, Donoho and Liu [55].
Remark 16.1: In order to make all of our exchanges of differentiation and expectation rigorous,
we must have some conditions on the densities we consider. One simple condition sufficient to make
this work is via Lebesgue’s dominated convergence theorem. Let f : X ×Θ→ R be a differentiable
function. For a fixed base measure µ assume there exists a function g such that g(x) ≥ ‖∇θf(x, θ)‖
for all θ, where ∫

X
g(x)dµ(x) <∞.

Then in this case, we have ∇θ
∫
f(x, θ)dµ(x) =

∫
∇θf(x, θ)dµ(x) by the mean-value theorem and

definition of a derivative. (Note that for all θ0 we have supv:‖v‖2≤δ ‖∇θf(x, θ)‖2
∣∣
θ=θ0+v

≤ g(x).)
More generally, this type of argument can handle absolutely continuous functions, which are dif-
ferentiable almost everywhere. 3
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Chapter 17

Surrogate Risk Consistency: the
Classification Case

I. The setting: supervised prediction problem

(a) Have data coming in pairs (X,Y ) and a loss L : R×Y → R (can have more general losses)

(b) Often, it is hard to minimize L (for example, if L is non-convex), so we use a surrogate ϕ

(c) We would like to compare the risks of functions f : X → R:

Rϕ(f) := E[ϕ(f(X), Y )] and R(f) := E[L(f(X), Y )]

In particular, when does minimizing the surrogate give minimization of the true risk?

(d) Our goal: when we define the Bayes risks R∗ϕ and R∗

Definition 17.1 (Fisher consistency). We say the loss ϕ is Fisher consistent if for any
sequence of functions fn

Rϕ(fn)→ R∗ϕ implies R(fn)→ R∗

II. Classification case

(a) We focus on the binary classification case so that Y ∈ {−1, 1}
1. Margin-based losses: predict sign correctly, so for α ∈ R,

L(α, y) = 1 {αy ≤ 0} and ϕ(α, y) = φ(yα).

2. Consider conditional version of risks. Let η(x) = P(Y = 1 | X = x) be conditional
probability, then

R(f) = E[1 {f(X)Y ≤ 0}] = P(sign(f(X)) 6= Y )

= E [η(X)1 {f(X) ≤ 0}+ (1− η(X))1 {f(X) ≥ 0}] = E[`(f(X), η(X))]

and

Rφ(f) = E[φ(Y f(X))]

= E [η(X)φ(f(X)) + (1− η(X))φ(−f(X))] = E[`φ(f(X), η(X))]

where we have defined the conditional risks

`(α, η) = η1 {α ≤ 0}+ (1− η)1 {α ≥ 0} and `φ(α, η) = ηφ(α) + (1− η)φ(−α).
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3. Note the minimizer of `: we have α∗(η) = sign(η−1/2), and f∗(X) = sign(η(X)−1/2)
minimizes risk R(f) over all f

4. Minimizing f can be achieved pointwise, and we have

R∗ = E[inf
α
`(α, η(X))] and R∗φ = E[inf

α
`φ(α, η(X))].

(b) Example 17.1 (Exponential loss): Consider the exponential loss, used in AdaBoost
(among other settings), which sets φ(α) = e−α. In this case, we have

argmin
α

`φ(α, η) =
1

2
log

η

1− η
because

∂

∂α
`φ(α, η) = −ηe−α + (1− η)eα.

Thus f∗φ(x) = 1
2 log η(x)

1−η(x) , and this is Fisher consistent. 3

(c) Classification calibration

1. Consider pointwise versions of risk (all that is necessary, turns out)

2. Define the infimal conditional φ-risks as

`∗φ(η) := inf
α
`φ(α, η) and `wrong

φ (η) := inf
α(η−1/2)≤0

`φ(α, η).

3. Intuition: if we always have `∗φ(η) < `wrong
φ (η) for all η, we should do fine

4. Define the sub-optimality function H : [0, 1]→ R

H(δ) := `wrong
φ

(
1 + δ

2

)
− `∗φ

(
1 + δ

2

)
.

Definition 17.2. The margin-based loss φ is classification calibrated if H(δ) > 0 for
all δ > 0. Equivalently, for any η 6= 1

2 , we have `∗φ(η) < `wrong
φ (η).

5. Example (Example 17.1 continued): For the exponential loss, we have

`wrong
φ (η) = inf

α(2η−1)≤0

{
ηe−α + (1− η)eα

}
= e0 = 1

while the unconstrained minimal conditional risk is

`∗φ(η) = η

√
1− η
η

+ (1− η)

√
η

1− η
= 2
√
η(1− η),

so that H(δ) = 1−
√

1− δ2 ≥ 1
2δ

2. 3

Example 17.2 (Hinge loss): We can also consider the hinge loss, which is defined
as φ(α) = [1− α]+. We first compute the minimizers of the conditional risk; we
have

`φ(α, η) = η [1− α]+ + (1− η) [1 + α]+ ,

whose unique minimizer (for η 6∈ {0, 1
2 , 1}) is α(η) = sign(2η − 1). We thus have

`∗φ(η) = 2 min{η, 1− η} and `wrong
φ (η) = η + (1− η) = 1.

We obtain H(δ) = 1−min{1 + δ, 1− δ} = δ. 3

Comparing to the sub-optimality function for exp-loss, is tighter.
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6. Pictures: use exponential loss, with η and without.

(d) Our goal: using classification calibration, find some function ψ such that ψ(Rφ(f)−R∗φ) ≤
R(f)−R∗, where ψ(δ) > 0 for all δ > 0. Can we get a convex version of H, them maybe
use Jensen’s inequality to get the results? Turns out we will be able to do this.

III. Some necessary asides on convex analysis

(a) Epigraphs and closures

1. For a function f , the epigraph epi f is the set of points (x, t) such that f(x) ≤ t
2. A function f is said to be closed if its epigraph is closed, which for convex f occurs if

and only if f is lower semicontinuous (meaning lim infx→x0 f(x) ≥ f(x0))

3. Note: a one-dimensional closed convex function is continuous

Lemma 17.3. Let f : R → R be convex. Then f is continuous on the interior of its
domain.

(Proof in notes; just give a picture)

Lemma 17.4. Let f : R→ R be closed convex. Then f is continuous on its domain.

4. The closure of a function f is the function cl f whose epigraph is the closed convex
hull of epi f (picture)

(b) Conjugate functions (Fenchel-Legendre transform)

1. Let f : Rd → R be an (arbitrary) function. Its conjugate (or Fenchel-Legendre conju-
gate) is defined to be

f∗(s) := sup
t
{〈t, s〉 − f(t)} .

(Picture here) Note that we always have f∗(s) + f(t) ≥ 〈s, t〉, or f(t) ≥ 〈s, t〉 − f∗(s)
2. The Fenchel biconjugate is defined to be f∗∗(t) = sups{〈t, s〉 − f∗(s)} (Picture here,

noting that f ′(t) = −s implies f∗(t) = ts− f(t))

3. In fact, the biconjugate is the largest closed convex function smaller than f :

Lemma 17.5. We have

f∗∗(x) = sup
a∈Rd,b∈R

{〈a, x〉 − b : 〈a, t〉 − b ≤ f(t) for all t} .

Proof Let A ⊂ Rd × R denote all the pairs (a, b) minorizing f , that is, those pairs
such that f(t) ≥ 〈a, t〉 − b for all t. Then we have

(a, b) ∈ A⇔ f(t) ≥ 〈a, t〉 − b for all t

⇔ b ≥ 〈a, t〉 − f(t) all t

⇔ b ≥ f∗(a) and a ∈ dom f∗.

Thus we obtain the following sequence of equalities:

sup
(a,b)∈A

{〈a, t〉 − b} = sup {〈a, t〉 − b : a ∈ dom f∗,−b ≤ −f∗(a)}

= sup {〈a, t〉 − f∗(a)} .

So we have all the supporting hyperplanes to the graph of f as desired.
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4. Other interesting lemma:

Lemma 17.6. Let h be either (i) continuous on [0, 1] or (ii) non-decreasing on [0, 1].
(And set h(1 + δ) = +∞ for δ > 0.) If h satisfies h(t) > 0 for t > 0 and h(0) = 0,
then f(t) = h∗∗(t) satisfies f(t) > 0 for any t > 0.

(Proof by picture)

IV. Classification calibration results:

(a) Getting quantitative bounds on risk: define the ψ-transform via

ψ(δ) := H∗∗(δ). (17.0.1)

(b) Main theorem for today:

Theorem 17.7. Let φ be a margin-based loss function and ψ the associated ψ-transform.
Then for any f : X → R,

ψ(R(f)−R∗) ≤ Rφ(f)−R∗φ. (17.0.2)

Moreover, the following three are equivalent:

1. The loss φ is classification-calibrated

2. For any sequence δn ∈ [0, 1],

ψ(δn)→ 0 ⇔ δn → 0.

3. For any sequence of measurable functions fn : X → R,

Rφ(fn)→ R∗φ implies R(fn)→ R∗.

1. Some insights from theorem. Recall examples 17.1 and 17.2. For both of these, we
have that ψ(δ) = H(δ), as H is convex. For the hinge loss, φ(α) = [1− α]+, we obtain
for any f that

P(Y f(X) ≤ 0)− inf
f

P(Y f(X) ≤ 0) ≤ E
[
[1− Y f(X)]+

]
− inf

f
E
[
[1− Y f(X)]+

]
.

On the other hand, for the exponential loss, we have

1

2

(
P(Y f(X) ≤ 0)− inf

f
P(Y f(X) ≤ 0)

)2

≤ E [exp(−Y f(X))]− inf
f

E [exp(−Y f(X))] .

The hinge loss is sharper.

2. Example 17.8 (Regression for classification): What about the surrogate loss
1
2(f(x) − y)2? In the homework, show which margin φ this corresponds to, and
moreover, H(δ) = 1

2δ
2. So regressing on the labels is consistent. 3

(c) Proof of Theorem 17.7 The proof of the theorem proceeds in several parts.

1. We first state a lemma, which follows from the results on convex functions we have
already proved. The lemma is useful for several different parts of our proof.

Lemma 17.9. We have the following.

a. The functions H and ψ are continuous.
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b. We have H ≥ 0 and H(0) = 0.

c. If H(δ) > 0 for all δ > 0, then ψ(δ) > 0 for all δ > 0.

Because H(0) = 0 and H ≥ 0: we have

`wrong
φ (1/2) := inf

α(1−1)≤0
`φ(α, 1/2) = inf

α
`φ(α, 1/2) = `∗φ(1/2),

so H(0) = `∗φ(1/2) − `∗φ(1/2) = 0. (It is clear that the sub-optimality gap H ≥ 0 by
construction.)

2. We begin with the first statement of the theorem, inequality (17.0.2). Consider first
the gap (for a fixed margin α) in conditional 0-1 risk,

`(α, η)− inf
α
`(α, η) = η1 {α ≤ 0}+ (1− η)1 {α ≥ 0} − η1 {η ≤ 1/2} − (1− η)1 {η ≥ 1/2}

=

{
0 if sign(α) = sign(η − 1

2)

η ∨ (1− η)− η ∧ (1− η) = |2η − 1| if sign(α) 6= sign(η − 1
2).

In particular, we obtain that the gap in risks is

R(f)−R∗ = E [1 {sign(f(X)) 6= sign(2η(X)− 1)} |2η(X)− 1|] . (17.0.3)

Now we use expression (17.0.3) to get an upper bound on R(f) − R∗ via the φ-risk.
Indeed, consider the ψ-transform (17.0.1). By Jensen’s inequality, we have that

ψ(R(f)−R∗) ≤ E [ψ(1 {sign(f(X)) 6= sign(2η(X)− 1)} |2η(X)− 1|)] .

Now we recall from Lemma 17.9 that ψ(0) = 0. Thus we have

ψ(R(f)−R∗) ≤ E [ψ(1 {sign(f(X)) 6= sign(2η(X)− 1)} |2η(X)− 1|)]
= E [1 {sign(f(X)) 6= sign(2η(X)− 1)}ψ(|2η(X)− 1|)] (17.0.4)

Now we use the special structure of the suboptimality function we have constructed.
Note that ψ ≤ H, and moreover, we have for any α ∈ R that

1 {sign(α) 6= sign(2η − 1)}H(|2η − 1|) = 1 {sign(α) 6= sign(2η − 1)}
[

inf
α(2η−1)≤0

`φ(α, η)− `∗φ(η)

]
≤ `φ(α, η)− `∗φ(η), (17.0.5)

because (1 + |2η − 1|)/2 = max{η, 1− η}.
Combining inequalities (17.0.4) and (17.0.5), we see that

ψ(R(f)−R∗) ≤ E [1 {sign(f(X)) 6= sign(2η(X)− 1)}H(|2η(X)− 1|)]
≤ E

[
`φ(f(X), η(X))− `∗φ(η(X))

]
= Rφ(f)−R∗φ,

which is our desired result.

3. Having proved the quantitative bound (17.0.2), we now turn to proving the second part
of Theorem 17.7. Using Lemma 17.9, we can prove the equivalence of all three items.
We begin by showing that IV(b)1 implies IV(b)2. If φ is classification calibrated, we
have H(δ) > 0 for all δ > 0. Because ψ is continuous and ψ(0) = 0, if δ → 0, then
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ψ(δ) → 0. It remains to show that ψ(δ) → 0 implies that δ → 0. But this is clear
because we know that ψ(0) = 0 andψ(δ) > 0 whenever δ > 0, and the convexity of ψ
implies that ψ is increasing.
To obtain IV(b)3 from IV(b)2, note that by inequality (17.0.2), we have

ψ(R(fn)−R∗) ≤ Rφ(fn)−R∗φ → 0,

so we must have that δn = R(fn)−R∗ → 0.
Finally, we show that IV(b)1 follows from IV(b)3. Assume for the sake of contradiction
that IV(b)3 holds but IV(b)1 fails, that is, φ is not classification calibrated. Then there
must exist η < 1/2 and a sequence αn ≥ 0 (i.e. a sequence of predictions with incorrect
sign) satisfying

`φ(αn, η)→ `∗φ(η).

Construct the classification problem with a singleton X = {x}, and set P(Y = 1) = η.
Then the sequence fn(x) = αn satisfies Rφ(fn)→ R∗φ but the true 0-1 risk R(fn) 6→ R∗.

V. Classification calibration in the convex case

a. Suppose that φ is convex, which we often use for computational reasons

b.

Theorem 17.10 (Bartlett, Jordan, McAuliffe [20]). If φ is convex, then φ is classification
calibrated if and only if φ′(0) exists and φ′(0) < 0.

Proof First, suppose that φ is differentiable at 0 and φ′(0) < 0. Then

`φ(α, η) = ηφ(α) + (1− η)φ(−α)

satisfies `′φ(0, η) = (2η − 1)φ′(0), and if φ′(0) < 0, this quantity is negative for η > 1/2.
Thus the minimizing α(η) ∈ (0,∞]. (Proof by picture, but formalize in full notes.)

For the other direction assume that φ is classification calibrated. Recall the definition of a
subgradient gα of the function φ at α ∈ R is any gα such that φ(t) ≥ φ(α) + gα(t− α) for
all t ∈ R. (Picture.) Let g1, g2 be such that `(α) ≥ `(0) + g1α and `(α) ≥ `(0) + g2α, which
exist by convexity. We show that both g1, g2 < 0 and g1 = g2. By convexity we have

`φ(α, η) ≥ η(φ(0) + g1α) + (1− η)(φ(0)− g2α)

= [ηg1 − (1− η)g2]α+ φ(0). (17.0.6)

We first show that g1 = g2, meaning that φ is differentiable. Without loss of generality,
assume g1 > g2. Then for η > 1/2, we would have ηg1 − (1− η)g2 > 0, which would imply
that

`φ(α, η) ≥ φ(0) ≥ inf
α′≤0

{
ηφ(α′) + (1− η)φ(−α′)

}
= `wrong

φ (η),

for all α ≥ 0 by (17.0.6), by taking α′ = 0 in the second inequality. By our assumption of
classification calibration, for η > 1/2 we know that

inf
α
`φ(α, η) < inf

α≤0
`φ(α, η) = `wrong

φ (η) so `∗φ(η) = inf
α≥0

`φ(α, η),

and under the assumption that g1 > g2 we obtain `∗φ(η) = infα≥0 `φ(α, η) > `wrong
φ (η),

which is a contradiction to classification calibration. We thus obtain g1 = g2, so that the
function φ has a unique subderivative at α = 0 and is thus differentiable.
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Now that we know φ is differentiable at 0, consider

ηφ(α) + (1− η)φ(−α) ≥ (2η − 1)φ′(0)α+ φ(0).

If φ′(0) ≥ 0, then for α ≥ 0 and η > 1/2 we must have the right hand side is at least
φ(0), which contradicts classification calibration, because we know that `∗φ(η) < `wrong

φ (η)
exactly as in the preceding argument.

17.1 Proofs of convex analytic results

17.1.1 Proof of Lemma 17.4

First, let (a, b) ⊂ dom f and fix x0 ∈ (a, b). Let x ↑ x0, which is no loss of generality, and we may
also assume x ∈ (a, b). Then we have

x = αa+ (1− α)x0 and x0 = βb+ (1− β)x

for some α, β ∈ [0, 1]. Rearranging by convexity,

f(x) ≤ αf(a) + (1− α)f(x0) = f(x0) + α(f(a)− f(x0))

and

f(x0) ≤ βf(b) + (1− β)f(x), or
1

1− β
f(x0) ≤ f(x) +

β

1− β
f(b).

Taking α, β → 0, we obtain

lim inf
x→x0

f(x) ≥ f(x0) and lim sup
x→x0

f(x) ≤ f(x0)

as desired.

17.1.2 Proof of Lemma 17.4

We need only consider the endpoints of the domain by Lemma 17.3, and we only need to show
that lim supx→x0 f(x) ≤ f(x0). But this is obvious by convexity: let x = ty + (1 − t)x0 for any
y ∈ dom f , and taking t→ 0, we have f(x) ≤ tf(y) + (1− t)f(x0)→ f(x0).

17.1.3 Proof of Lemma 17.6

We begin with the case (i). Define the function hlow(t) := infs≥t h(s). Then because h is continuous,
we know that over any compact set it attains its infimum, and thus (by assumption on h) hlow(t) > 0
for all t > 0. Moreover, hlow is non-decreasing. Now define flow(t) = h∗∗low(t) to be the biconjugate
of hlow; it is clear that f ≥ flow as h ≥ hlow. Thus we see that case (ii) implies case (i), so we turn
to the more general result to see that flow(t) > 0 for all t > 0.

For the result in case (ii), assume for the sake of contradiction there is some z ∈ (0, 1) satisfying
h∗∗(z) = 0. It is clear that h∗∗(0) = 0 and h∗∗ ≥ 0, so we must have h∗∗(z/2) = 0. Now, by
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assumption we have h(z/2) = b > 0, whence we have h(1) ≥ b > 0. In particular, the piecewise
linear function defined by

g(t) =

{
0 if t ≤ z/2

b
1−z/2(t− z/2) if t > z/2

is closed, convex, and satisfies g ≤ h. But g(z) > 0 = h∗∗(z), a contradiction to the fact that h∗∗

is the largest (closed) convex function below h.
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Chapter 18

Divergences, classification, and risk

I. Bayes risk in classification problems

a. Recall definition (2.2.3) of f -divergence between two distributions P and Q as

Df (P ||Q) :=

∫
q(x)f

(
p(x)

q(x)

)
dx,

where f : R+ → R is a convex function satisfying f(1) = 0. If f is not linear, then
Df (P ||Q) > 0 unless P = Q.

b. Focusing on binary classification case, let us consider some example risks and see what
connections they have to f -divergences. (Recall we have X ∈ X and Y ∈ {−1, 1} we would
like to classify.)

1. We require a few definitions to understand the performance of different classification
strategies. In particular, we consider the difference between the risk possible when we
see a point to classify and when we do not.

2. The prior risk is the risk attainable without seeing x, we have for a fixed sign α ∈ R the
definition

Rprior(α) := P (Y = 1)1 {α ≤ 0}+ P (Y = −1)1 {α ≥ 0} , (18.0.1)

and similarly the minimal prior risk, defined as

R∗prior := inf
α
{P (Y = 1)1 {α ≤ 0}+ P (Y = −1)1 {α ≥ 0}} = min{P (Y = 1), P (Y = −1)}.

(18.0.2)

3. Also have the prior φ-risk, defined as

Rφ,prior(α) := P (Y = 1)φ(α) + P (Y = −1)φ(−α), (18.0.3)

and the minimal prior φ-risk, defined as

R∗φ,prior := inf
α
{P (Y = 1)φ(α) + P (Y = −1)φ(−α)} . (18.0.4)

c. Examples of 0-1 loss and its friends: have X ∈ X and Y ∈ {−1, 1}.
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1. Example 18.1 (Binary classification with 0-1 loss): What is Bayes risk of binary
classifier? Let

p+1(x) = p(x | Y = 1) =
P (Y = 1 | X = x)p(x)

P (Y = 1)

be the density of X conditional on Y = 1 and similarly for p−1(x), and assume that
each class occurs with probability 1/2. Then

R∗ = inf
γ

∫
[1 {γ(x) ≤ 0}P (Y = 1 | X = x) + 1 {γ(x) ≥ 0}P (Y = −1 | X = x)] p(x)dx

=
1

2
inf
γ

∫
[1 {γ(x) ≤ 0} p+1(x) + 1 {γ(x) ≥ 0} p−1(x)] dx =

1

2

∫
min{p+1(x), p−1(x)}dx.

Similarly, we may compute the minimal prior risk, which is simply 1
2 by defini-

tion (18.0.2). Looking at the gap between the two, we obtain

R∗prior−R∗ =
1

2
−1

2

∫
min{p+1(x), p−1(x)}dx =

1

2

∫
[p1 − p−1]+ =

1

2
‖P1 − P−1‖TV .

That is, the difference is half the variation distance between P1 and P−1, the dis-
tributions of x conditional on the label Y . 3

2. Example 18.2 (Binary classification with hinge loss): We now repeat precisely
the same calculations as in Example 18.1, but using as our loss the hinge loss (recall
Example 17.2). In this case, the minimal φ-risk is

R∗φ =

∫
inf
α

[
[1− α]+ P (Y = 1 | X = x) + [1 + α]+ P (Y = −1 | X = x)

]
p(x)dx

=
1

2

∫
inf
α

[
[1− α]+ p1(x) + [1 + α]+ p−1(x)

]
dx =

∫
min{p1(x), p−1(x)}dx.

We can similarly compute the prior risk as R∗φ,prior = 1. Now, when we calculate
the improvement available via observing X = x, we find that

R∗φ,prior −R∗φ = 1−
∫

min{p1(x), p−1(x)}dx = ‖P1 − P−1‖TV ,

which is suggestively similar to Example 18.1. 3

d. Is there anything more we can say about this?

II. Statistical information, f -divergences, and classification problems

a. Statistical information

1. Suppose we have a classification problem with data X ∈ X and labels Y ∈ {−1, 1}. A
natural notion of information that X carries about Y is the gap

R∗prior −R∗, (18.0.5)

that between the prior risk and the risk attainable after viewing x ∈ X .
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2. Didn’t present this. True definition of statistical information: suppose class 1 has
prior probability π and class −1 has prior 1−π, and let P1 and P−1 be the distributions
of X ∈ X given Y = 1 and Y = −1, respectively. The Bayes risk associated with the
problem is then

Bπ(P1, P−1) := inf
γ

∫
[1 {γ(x) ≤ 0} p1(x)π + 1 {γ(x) ≥ 0} p−1(x)(1− π)] dx (18.0.6)

=

∫
p1(x)π ∧ p−1(x)(1− π)dx

and similarly, the prior Bayes risk is

Bπ := inf
α
{1 {α ≤ 0}π + 1 {α ≥ 0} (1− π)} = π ∧ (1− π). (18.0.7)

Then statistical information is

Bπ −Bπ(P1, P−1). (18.0.8)

3. Measure proposed by DeGroot [52] in experimental design problem; goal is to infer state
of world based on further experiments, want to measure quality of measurement.

4. Saw that for 0-1 loss, when a-priori each class was equally likely, then R∗prior − R∗ =
1
2 ‖P1 − P−1‖TV, and similarly for hinge loss (Example 18.2) that R∗φ,prior − R∗φ =
‖P1 − P−1‖TV.

5. Note that if P1 6= P−1, then the statistical information is positive.

b. Did present this. More general story? Yes.

1. Consider any margin-based surrogate loss φ, and look at the difference between

Bφ,π(P1, P−1) := inf
γ

∫
[φ(γ(x))p1(x)π + φ(−γ(x))p−1(x)(1− π)] dx

=

∫
inf
α

[φ(α)p1(x)π + φ(−α)p−1(x)(1− π)] dx

and the prior φ-risk, Bφ,π.

2. Note that

Bφ,π −Bφ,π(P1, P−1)

is simply gap in φ-risk R∗φ,prior −R∗φ for distribution with P (Y = 1) = π and

P (Y = y | X = x) =
p(x | Y = y)P (Y = y)

p(x)
=
py(x)π1{y=1}(1− π)1{y=−1}

πp1(x) + (1− π)p−1(x)
. (18.0.9)

c. Have theorem (see, for example, Liese and Vajda [105], or Reid and Williamson [119]):

Theorem 18.3. Let P1 and P−1 be arbitrary distributions on X , and let π ∈ [0, 1] be a
prior probability of a class label. Then there is a convex function fπ,φ : R+ → R satisfying
fπ,φ(1) = 0 such that

Bφ,π −Bφ,π(P1, P−1) = Dfπ,φ (P−1||P1) .

Moreover, this function fπ,φ is

fπ,φ(t) = sup
α

[
`∗φ(π)− πφ(α)t+ (1− π)φ(−α)

πt+ (1− π)

]
(tπ + (1− π)). (18.0.10)
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Proof First, consider the integrated Bayes risk. Recalling the definition of the condi-
tional distribution η(x) = P (Y = 1 | X = x), we have

Bφ,π −Bφ,π(P1, P−1) =

∫ [
`∗φ(π)− `∗φ(η(x))

]
p(x)dx

=

∫
sup
α

[
`∗φ(π)− φ(α)P (Y = 1 | x)− φ(−α)P (Y = −1 | x)

]
p(x)dx

=

∫
sup
α

[
`∗φ(π)− φ(α)

p1(x)π

p(x)
− φ(−α)

p−1(x)(1− π)

p(x)

]
p(x)dx,

where we have used Bayes rule as in (18.0.9). Let us now divide all appearances of the
density p1 by p−1, which yields

Bφ,π −Bφ,π(P1, P−1)

=

∫
sup
α

`∗φ(π)−
φ(α) p1(x)

p−1(x)π + φ(−α)(1− π)

p1(x)
p−1(x)π + (1− π)

( p1(x)

p−1(x)
π + (1− π)

)
p−1(x)dx.

(18.0.11)

By inspection, the representation (18.0.11) gives the result of the theorem if we can argue
that the function fπ is convex, where we substitute p1(x)/p−1(x) for t in fπ(t).

To see that the function fπ is convex, consider the intermediate function

sπ(u) := sup
α
{−πφ(α)u− (1− π)φ(−α)} .

This is the supremum of a family of linear functions in the variable u, so it is convex.
Moreover, as we noted in the first exercise set, the perspective of a convex function g,
defined by h(u, t) = tg(u/t) for t ≥ 0, is jointly convex in u and t. Thus, as

fπ(t) = `∗φ(π) + sπ

(
t

πt+ (1− π)

)
(πt+ (1− π)),

we have that fπ is convex. It is clear that fπ(1) = 0 by definition of `∗φ(π).

d. Take-home: any loss function induces an associated f -divergence. (There is a complete
converse, in that any f -divergence can be realized as the difference in prior and posterior
Bayes risk for some loss function; see, for example, Liese and Vajda [105] for results of this
type.)

III. Quantization and other types of empirical minimization

a. Do these equivalences mean anything? What about the fact that the suboptimality function
Hφ was linear for the hinge loss?

b. Consider problems with quantization: we must jointly learn a classifier (prediction or dis-
criminant function) γ and a quantizer q : X → {1, . . . , k}, where k is fixed and we wish
to find an optimal quantizer q ∈ Q, where Q is some family of quantizers. Recall the
notation (2.2.1) of quantization of f -divergence, so

Df (P0||P1 | q) =

k∑
i=1

P1(q−1(i))f

(
P0(q−1(i))

P1(q−1(i))

)
=

k∑
i=1

P1(Ai)f

(
P0(Ai)

P1(Ai)

)
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where the Ai are the quantization regions of X .

c. Using Theorem 18.3, we can show how quantization and learning can be unified.

1. Quantized version of risk: for q : X → {1, . . . , k} and γ : [k]→ R,

Rφ(γ | q) = E[φ(Y γ(q(X)))]

2. Rearranging and using integration,

Rφ(γ | q) = E[φ(Y γ(q(X)))] =
k∑
z=1

E[φ(Y γ(z)) | q(X) = z]P (q(X) = z)

=
k∑
z=1

[φ(γ(z))P (Y = 1 | q(X) = z) + φ(−γ(z))P (Y = −1 | q(X) = z)]P (q(X) = z)

=

k∑
z=1

[
φ(γ(z))

P (q(X) = z | Y = 1)P (Y = 1)

P (q(X) = z)
+ φ(−γ(z))

P (q(X) = z | Y = −1)P (Y = −1)

P (q(X) = z)

]
P (q(X) = z)

=
k∑
z=1

[φ(γ(z))P1(q(X) = z)π + φ(−γ(z))P−1(q(X) = z)(1− π)] .

3. Let P q denote the distribution with probability mass function

P q(z) = P (q(X) = z) = P (q−1({z})),

and define quantized Bayes φ-risk

R∗φ(q) = inf
γ
Rφ(γ | q)

Then for problem with P (Y = 1) = π, we have

R∗φ,prior −R∗φ(q) = Bφ,π −Bφ,π(P q
1 , P

q
−1) = Dfπ,φ (P−1||P1 | q) . (18.0.12)

d. Result unifying quantization and learning: we say that loss functions φ1 and φ2 are univer-
sally equivalent if they induce the same f divergence (18.0.10), that is, there is a constant
c > 0 and a, b ∈ R such that

fπ,φ1(t) = cfπ,φ2(t) + at+ b for all t. (18.0.13)

Theorem 18.4. Let φ1 and φ2 be equivalent margin-based surrogate loss functions. Then
for any quantizers q1 and q2,

R∗φ1(q1) ≤ R∗φ1(q2) if and only if R∗φ2(q1) ≤ cR∗φ2(q2).

Proof The proof follows straightforwardly via the representation (18.0.12). If φ1 and φ2

are equivalent, then we have that

R∗φ1,prior −R∗φ1(q) = Dfπ,φ1
(P−1||P1 | q) = cDfπ,φ2

(P−1||P1 | q) + a+ b

= c
[
R∗φ2,prior −R∗φ2(q)

]
+ a+ b
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for any quantizer q. In particular, we have

R∗φ1(q1) ≤ R∗φ1(q2) if and only if R∗φ1,prior −R∗φ1(q1) ≥ R∗φ1,prior −R∗φ1(q2)

if and only if Dfπ,φ1
(P−1||P1 | q1) ≥ Dfπ,φ1

(P−1||P1 | q2)

if and only if Dfπ,φ2
(P−1||P1 | q1) ≥ Dfπ,φ2

(P−1||P1 | q2)

if and only if R∗φ2,prior −R∗φ2(q1) ≥ R∗φ2,prior −R∗φ2(q2).

Subtracting R∗φ2,prior from both sides gives our desired result.

e. Some comments:

1. We have an interesting thing: if we wish to learn a quantizer and a classifier jointly,
then this is possible by using any loss equivalent to the true loss we care about.

2. Example: hinge loss and 0-1 loss are equivalent.

3. Turns out that the condition that the losses φ1 and φ2 be equivalent is (essentially)
necessary and sufficient for two quantizers to induce the same ordering [115]. This
equivalence is necessary and sufficient for the ordering conclusion of Theorem 18.4.
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Part IV

Online game playing and compression
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Chapter 19

Universal prediction and coding

In this chapter, we explore sequential game playing and online probabilistic prediction schemes.
These have applications in coding when the true distribution of the data is unknown, biological
algorithms (encoding genomic data, for example), control, and a variety of other areas. The field of
universal prediction is broad; in addition to this chapter touching briefly on a few of the techniques
therein and their relationships with statistical modeling and inference procedures, relevant reading
includes the survey by Merhav and Feder [112], the more recent book of Grünwald [75], and Tsachy
Weissman’s EE376c course at Stanford.

19.1 Universal and sequential prediction

We begin by defining the universal prediction (and universal coding) problems. In this setting, we
assume we are playing a game in which given a sequence Xn

1 of data, we would like to predict the
data (which, as we saw in Example 15.5, is the same as encoding the data) as as if we knew the
true distribution of the data. Or, in more general settings, we would like to predict the data as
well as all predictive distributions P from some family of distributions P, even if a priori we know
little about the coming sequence of data.

We consider two versions of this game: the probabilistic version and the adversarial version.
We shall see that they have similarities, but there are also a few important distinctions between
the two. For both of the following definitions of sequential prediction games, we assume that p and
q are densities or probability mass functions in the case that X is continuous or discrete (this is no
real loss of generality) for distributions P and Q.

We begin with the adversarial case. Given a sequence xn1 ∈ X n, the regret of the distribution
Q for the sequence xn1 with respect to the distribution P is

Reg(Q,P, xn1 ) := log
1

q(xn1 )
− log

1

p(xn1 )
=

n∑
i=1

log
1

q(xi | xi−1
1 )

− log
1

p(xi | xi−1
1 )

, (19.1.1)

where we have written it as the sum over q(xi | xi−1
1 ) to emphasize the sequential nature of the

game. Associated with the regret of the sequence xn1 is the adversarial regret (usually simply called
the regret) of Q with respect to the family P of distributions, which is

RXn (Q,P) := sup
P∈P,xn1∈Xn

Reg(Q,P, xn1 ). (19.1.2)

231



Stanford Statistics 311/Electrical Engineering 377 John Duchi

In more generality, we may which to use a loss function L different than the log loss; that is, we
might wish to measure a loss-based version the regret as

n∑
i=1

L(xi, Q(· | xi−1
1 ))− L(xi, P (· | xi−1

1 )),

where L(xi, P ) indicates the loss suffered on the point xi when the distribution P over Xi is played,
and P (· | xi−1

1 ) denotes the conditional distribution of Xi given xi−1
1 according to P . We defer

discussion of such extensions later, focusing on the log loss for now because of its natural connections
with maximum likelihood and coding.

A less adversarial problem is to minimize the redundancy, which is the expected regret under a
distribution P . In this case, we define the redunancy of Q with respect to P as the expected regret
of Q with respect to P under the distribution P , that is,

Redn(Q,P ) := EP
[
log

1

q(Xn
1 )
− log

1

p(Xn
1 )

]
= Dkl (P ||Q) , (19.1.3)

where the dependence on n is implicit in the KL-divergence. The worst-case redundancy with
respect to a class P is then

Rn(Q,P) := sup
P∈P

Redn(Q,P ). (19.1.4)

We now give two examples to illustrate the redundancy.

Example 19.1 (Example 15.5 on coding, continued): We noted in Example 15.5 that for
any p.m.f.s p and q on the set X , it is possible to define coding schemes Cp and Cq with code
lengths

`Cp(x) =

⌈
log

1

p(x)

⌉
and `Cq(x) =

⌈
log

1

q(x)

⌉
.

Conversely, given (uniquely decodable) encoding schemes Cp and Cq : X → {0, 1}∗, the func-

tions pCp(x) = 2−`Cp (x) and qCq(x) = 2−`Cq (x) satisfy
∑

x pCp(x) ≤ 1 and
∑

x qCq(x) ≤ 1. Thus,
the redundancy of Q with respect to P is the additional number of bits required to encode
variables distributed according to P when we assume they have distribution Q:

Redn(Q,P ) =

n∑
i=1

EP
[
log

1

q(Xi | Xi−1
1 )

− log
1

p(Xi | Xi−1
1 )

]

=

n∑
i=1

EP [`Cq(Xi)]− EP [`Cp(Xi)],

where `C(x) denotes the number of bits C uses to encode x. Note that, as in Chapter 13, the
code d− log p(x)e is (essentially) optimal. 3

As another example, we may consider a filtering or prediction problem for a linear system.

Example 19.2 (Prediction in a linear system): Suppose we believe that a sequence of random
variables Xi ∈ Rd are Markovian, where Xi given Xi−1 is normally distributed with mean
AXi−1 + g, where A is an unknown matrix and g ∈ Rd is a constant drift term. Concretely, we
assume Xi ∼ N(AXi−1 + g, σ2Id×d), where we assume σ2 is fixed and known. For our class of
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predicting distributions Q, we may look at those that at iteration i predict Xi ∼ N(µi, σ
2I).

In this case, the regret is given by

Reg(Q,P, xn1 ) =

n∑
i=1

1

2σ2
‖µi − xi‖22 −

1

2σ2
‖Axi−1 + g − xi‖22 ,

while the redundancy is

Redn(Q,P ) =
1

2σ2

n∑
i=1

E[‖AXi−1 + g − µi(Xi−1
1 )‖22],

assuming that P is the linear Gaussian Markov chain specified. 3

19.2 Minimax strategies for regret

Our definitions in place, we now turn to strategies for attaining the optimal regret in the adversarial
setting. We discuss this only briefly, as optimal strategies are somewhat difficult to implement, and
the redundancy setting allows (for us) easier exploration.

We begin by describing a notion of complexity that captures the best possible regret in the ad-
versarial setting. In particular, assume without loss of generality that we have a set of distributions
P = {Pθ}θ∈Θ parameterized by θ ∈ Θ, where the distributions are supported on X n. We define
the complexity of the set P (viz. the complexity of Θ) as

Compn(Θ) := log

∫
Xn

sup
θ∈Θ

pθ(x
n
1 )dxn1 or generally Compn(Θ) := log

∫
Xn

sup
θ∈Θ

pθ(x
n
1 )dµ(xn1 ),

(19.2.1)
where µ is some base measure on X n. Note that we may have Compn(Θ) = +∞, especially when
Θ is non-compact. This is not particularly uncommon, for example, consider the case of a normal
location family model over X = R with Θ = R.

It turns out that the complexity is precisely the minimax regret in the adversarial setting.

Proposition 19.3. The minimax regret

inf
Q

RX (Q,P) = Compn(Θ).

Moreover, if Compn(Θ) < +∞, then the normalized maximum likelihood distribution (also known
as the Shtarkov distribution) Q, defined with density

q(xn1 ) =
supθ∈Θ pθ(x

n
1 )∫

supθ pθ(x
n
1 )dxn1

,

is uniquely minimax optimal.

The proposition completely characterizes the minimax regret in the adversarial setting, and it
gives the unique distribution achieving the regret. Unfortunately, in most cases it is challenging
to compute the minimax optimal distribution Q, so we must make approximations of some type.
One approach is to make Bayesian approximations to Q, as we do in the sequel when we consider
redundancy rather than adversarial regret. See also the book of Grünwald [75] for more discussion
of this and other issues.
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Proof We begin by proving the result in the case that Compn < +∞. First, note that the
normalized maximum likelihood distribution Q has constant regret:

RXn (Q,P) = sup
xn1∈Xn

[
log

1

q(xn1 )
− log

1

supθ pθ(x
n
1 )

]
= sup

xn1

[
log

∫
supθ pθ(x

n
1 )dxn1

supθ pθ(x
n
1 )

− log
1

supθ pθ(x
n
1 )

]
= Compn(P).

Moreover, for any distribution Q on X n we have

RXn (Q,P) ≥
∫ [

log
1

q(xn1 )
− log

1

supθ pθ(x
n
1 )

]
q(xn1 )dxn1

=

∫ [
log

q(xn1 )

q(xn1 )
+ Compn(Θ)

]
q(xn1 )dxn1

= Dkl

(
Q||Q

)
+ Compn(Θ), (19.2.2)

so that Q is uniquely minimax optimal, as Dkl

(
Q||Q

)
> 0 unless Q = Q.

Now we show how to extend the lower bound (19.2.2) to the case when Compn(Θ) = +∞. Let
us assume without loss of generality that X is countable and consists of points x1, x2, . . . (we can
discretize X otherwise) and assume we have n = 1. Fix any ε ∈ (0, 1) and construct the sequence
θ1, θ2, . . . so that pθj (xj) ≥ (1 − ε) supθ∈Θ pθ(x), and define the sets Θj = {θ1, . . . , θj}. Clearly
we have Comp(Θj) ≤ log j, and if we define qj(x) = maxθ∈Θj pθ(x)/

∑
x∈X maxθ∈Θj pθ(x), we may

extend the reasoning yielding inequality (19.2.2) to obtain

RX (Q,P) = sup
x∈X

[
log

1

q(x)
− log

1

supθ∈Θ pθ(x)

]
≥
∑
x

qj(x)

[
log

1

q(x)
− log

1

maxθ∈Θj pθ(x)

]

=
∑
x

qj(x)

[
log

qj(x)

q(x)
+ log

∑
x′

max
θ∈Θj

pθ(x
′)

]
= Dkl

(
Qj ||Q

)
+ Comp(Θj).

But of course, by noting that

Comp(Θj) ≥ (1− ε)
j∑
i=1

sup
θ
pθ(xi) +

∑
i>j

max
θ∈Θj

pθ(xi)→ +∞

as j →∞, we obtain the result when Compn(Θ) =∞.

We now give an example where (up to constant factor terms) we can explicitly calculate the
minimax regret in the adversarial setting. In this case, we compete with the family of i.i.d. Bernoulli
distributions.

Example 19.4 (Complexity of the Bernoulli distribution): In this example, we consider
competing against the family of Bernoulli distributions {Pθ}θ∈[0,1], where for a point x ∈ {0, 1},
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we have Pθ(x) = θx(1 − θ)1−x. For a sequence xn1 ∈ {0, 1}n with m non-zeros, we thus have

for θ̂ = m/n that

sup
θ∈[0,1]

Pθ(x
n
1 ) = P

θ̂
(xn1 ) = θ̂m(1− θ̂)n−m = exp(−nh2(θ̂)),

where h2(p) = −p log p− (1− p) log(1− p) is the binary entropy. Using this representation, we
find that the complexity of the Bernoulli family is

Compn([0, 1]) = log

n∑
m=0

(
n

m

)
e−nh2(m

n
).

Rather than explicitly compute with this, we now use Stirling’s approximation (cf. Cover and
Thomas [46, Chapter 17]): for any p ∈ (0, 1) with np ∈ N, we have(

n

np

)
∈ 1√

n

[
1√

8p(1− p)
,

1√
πp(1− p)

]
exp(nh2(p)).

Thus, by dealing with the boundary cases m = n and m = 0 explicitly, we obtain

n∑
m=0

(
n

m

)
exp(−nh2(

m

n
)) = 2 +

n−1∑
m=1

(
n

m

)
exp(−nh2(

m

n
))

∈ 2 +

[
1√
8
,

1√
π

]
1√
n

n−1∑
m=1

1√
m
n (1− m

n )︸ ︷︷ ︸
→n

∫ 1
0 (θ(1−θ))−

1
2

,

the noted asymptote occuring as n → ∞ by the fact that this sum is a Riemann sum for the
integral

∫ 1
0 θ
−1/2(1− θ)−1/2dθ. In particular, we have that as n→∞,

inf
Q

RXn (Q,P) = Compn([0, 1]) = log

(
2 + [8−1/2, π−1/2]n1/2

∫ 1

0

1√
θ(1− θ)

dθ

)
+ o(1)

=
1

2
log n+ log

∫ 1

0

1√
θ(1− θ)

dθ +O(1).

We remark in passing that this is equal to 1
2 log n+ log

∫ 1
0

√
Iθdθ, where Iθ denotes the Fisher

information of the Bernoulli family (recall Example 16.2). We will see that this holds in more
generality, at least for redundancy, in the sequel. 3

19.3 Mixture (Bayesian) strategies and redundancy

We now turn to a slightly less adversarial setting, where we assume that we compete against a
random sequence Xn

1 of data, drawn from some fixed distribution P , rather than an adversarially
chosen sequence xn1 . Thinking of this problem as a game, we choose a distribution Q according
to which we make predictions (based on previous data), and nature chooses a distribution Pθ ∈
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P = {Pθ}θ∈Θ. In the simplest case—upon which we focus—the data Xn
1 are then generated i.i.d.

according to Pθ, and we suffer expected regret (or redundancy)

Redn(Q,Pθ) = Eθ
[
log

1

q(Xn
1 )

]
− Eθ

[
log

1

pθ(X
n
1 )

]
= Dkl (Pnθ ||Qn) , (19.3.1)

where we use Qn to denote that Q is applied on all n data points (in a sequential fashion, as
Q(· | Xi−1

1 )). In this expression, q and p denote the densities of Q and P , respectively. In a slightly
more general setting, we may consider the expected regret of Q with respect to a distribution Pθ
even under model mis-specification, meaning that the data is generated according to an alternate
distribution P . In this case, the (more general) redundancy becomes

EP
[
log

1

q(Xn
1 )
− log

1

pθ(X
n
1 )

]
. (19.3.2)

In both cases (19.3.1) and (19.3.2), we would like to be able to guarantee that the redundancy
grows more slowly than n as n→∞. That is, we would like to find distributions Q such that, for
any θ0 ∈ Θ, we have 1

nDkl

(
Pnθ0 ||Qn

)
→ 0 as n → ∞. Assuming we could actually obtain such a

distribution in general, this is interesting because (even in the i.i.d. case) for any fixed distribution
Pθ 6= Pθ0 , we must have Dkl

(
Pnθ0 ||P

n
θ

)
= nDkl (Pθ0 ||Pnθ ) = Ω(n). A standard approach to attaining

such guarantees is the mixture approach, which is based on choosing Q as a convex combination
(mixture) of all the possible source distributions Pθ for θ ∈ Θ.

In particular, given a prior distribution π (weighting function integrating to 1) over Θ, we define
the mixture distribution

Qπn(A) =

∫
Θ
π(θ)Pθ(A)dθ for A ⊂ X n. (19.3.3)

Rewriting this in terms of densities pθ, we have

qπn(xn1 ) =

∫
Θ
π(θ)pθ(x

n
1 )dθ.

Conceptually, this gives a simple prediction scheme, where at iteration i we play the density

qπ(xi | xi−1
1 ) =

qπ(xi1)

qπ(xi−1
1 )

,

which is equivalent to playing

qπ(xi | xi−1
1 ) =

∫
Θ
q(xi, θ | xi−1

1 )dθ =

∫
Θ
pθ(xi)π(θ | xi−1

1 )dθ,

by construction of the distributions Qπ as mixtures of i.i.d. Pθ. Here the posterior distribution
π(θ | xi−1

1 ) is given by

π(θ | xi−1
1 ) =

π(θ)pθ(x
i−1
1 )∫

Θ π(θ′)pθ′(x
i−1
1 )dθ′

=
π(θ) exp

(
− log 1

pθ(xi−1
1 )

)
∫

Θ π(θ′)pθ′(x
i−1
1 )dθ′

, (19.3.4)

where we have emphasized that this strategy exhibits an exponential weighting approach, where
distribution weights are scaled exponentially by their previous loss performance of log 1/pθ(x

i−1
1 ).
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This mixture construction (19.3.3), with the weighting scheme (19.3.4), enjoys very good per-
formance. In fact, we say that so long as the prior π puts non-zero mass over all of Θ, under some
appropriate smoothness conditions, the scheme Qπ is universal, meaning that Dkl (Pnθ ||Qπn) = o(n).
We have the following theorem illustrating this effect. In the theorem, we let π be a density on Θ,
and we assume the Fisher information Iθ for the family P = {Pθ}θ∈Θ exists in a neighborhood of
θ0 ∈ int Θ, and that the distributions Pθ are sufficiently regular that differentiation and integration
can be interchanged. (See Clarke and Barron [42] for precise conditions.) We have

Theorem 19.5 (Clarke and Barron [42]). Under the above conditions, if Qπn =
∫
Pnθ π(θ)dθ is the

mixture (19.3.3), then

Dkl

(
Pnθ0 ||Q

π
n

)
− d

2
log

n

2πe
→ log

1

π(θ0)
+

1

2
log det(Iθ0) as n→∞. (19.3.5)

While we do not rigorously prove the theorem, we give a sketch showing the main components
of the result based on asymptotic normality arguments for the maximum likelihood estimator in
Section 19.4. See Clarke and Barron [42] for a full proof.

Example 19.6 (Bernoulli distributions with a Beta prior): Consider the class of binary (i.i.d.
or memoryless) Bernoulli sources, that is, the Xi are i.i.d Bernoulli(θ), where θ = Pθ(X = 1) ∈
[0, 1]. The Beta(α, β)-distribution prior on θ is the mixture π with density

π(θ) =
Γ(α+ β)

Γ(α)Γ(β)
θα−1(1− θ)β−1

on [0, 1], where Γ(a) =
∫∞

0 ta−1e−tdt denotes the gamma function. We remark that that under
the Beta(α, β) distribution, we have Eπ[θ] = α

α+β . (See any undergraduate probability text for
such results.)
If we play via a mixture of Bernoulli distributions under such a Beta-prior for θ, by Theo-
rem 19.5 we have a universal prediction scheme. We may also explicitly calculate the predictive
distribution Q. To do so, we first compute the posterior π(θ | Xi

1) as in expression (19.3.4).
Let Si =

∑i
j=1Xj be partial sum of the Xs up to iteration i. Then

π(θ | xi1) =
pθ(x

i
1)π(θ)

q(xi1)
∝ θSi(1− θ)i−Siθα−1θβ−1 = θα+Si−1(1− θ)β+i−Si−1,

where we have ignored the denominator as we must simply normalize the above quantity in
θ. But by inspection, the posterior density of θ | Xi

1 is a Beta(α+ Si, β + i− Si) distribution.
Thus to compute the predictive distribution, we note that Eθ[Xi] = θ, so we have

Q(Xi = 1 | Xi
1) = Eπ[θ | Xi

1] =
Si + α

i+ α+ β
.

Moreover, Theorem 19.5 shows that when we play the prediction game with a Beta(α, β)-prior,
we have redundancy scaling as

Dkl

(
Pnθ0 ||Q

π
n

)
=

1

2
log

n

2πe
+ log

[
Γ(α)Γ(β)

Γ(α+ β)

1

θα−1
0 (1− θ0)β−1

]
+

1

2
log

1

θ0(1− θ0)
+ o(1)

for θ0 ∈ (0, 1). 3

237



Stanford Statistics 311/Electrical Engineering 377 John Duchi

As one additional interesting result, we show that mixture models are actually quite robust,
even under model mis-specification, that is, when the true distribution generating the data does not
belong to the class P = {Pθ}θ∈Θ. That is, mixtures can give good performance for the generalized
redundancy quantity (19.3.2). For this next result, we as usual define the mixture distribution Qπ

over the set X via Qπ(A) =
∫

Θ Pθ(A)dπ(θ). We may also restrict this mixture distribution to a
subset Θ0 ⊂ Θ by defining

QπΘ0
(A) =

1

π(Θ0)

∫
Θ0

Pθ(A)dπ(θ).

Then we obtain the following robustness result.

Proposition 19.7. Assume that Pθ have densities pθ over X , let P be any distribution having
density p over X , and let qπ be the density associated with Qπ. Then for any Θ0 ⊂ Θ,

EP
[
log

1

qπ(X)
− log

1

pθ(X)

]
≤ log

1

π(Θ0)
+Dkl

(
P ||QπΘ0

)
−Dkl (P ||Pθ) .

In particular, Proposition 19.7 shows that so long as the mixture distributions QπΘ0
can closely

approximate Pθ, then we attain a convergence guarantee nearly as good as any in the family P =
{Pθ}θ∈Θ. (This result is similar in flavor to the mutual information bound (10.1.3), Corollary 10.2,
and the index of resolvability quantity.)
Proof Fix any Θ0 ⊂ Θ. Then we have qπ(x) =

∫
Θ pθ(x)dπ(θ) ≥

∫
Θ0
pθ(x)dπ(θ). Thus we have

EP
[
log

p(X)

qπ(X)

]
≤ EP

[
inf

Θ0⊂Θ
log

p(X)∫
Θ0
pθ(x)dπ(θ)

]

= EP

[
inf
Θ0

log
p(X)π(Θ0)

π(Θ0)
∫

Θ0
pθ(x)dπ(θ)

]
= EP

[
inf
Θ0

log
p(X)

π(Θ0)qπΘ0
(X)

]
.

This is certainly smaller than the same quantity with the infimum outside the expectation, and
noting that

EP
[
log

1

qπ(X)
− log

1

pθ(X)

]
= EP

[
log

p(X)

qπ(X)

]
− EP

[
log

p(X)

pθ(X)

]
gives the result.

19.3.1 Bayesian redundancy and objective, reference, and Jeffreys priors

We can also imagine a slight variant of the redundancy game we have described to this point. Instead
of choosing a distribution Q and allowing nature to choose a distribution Pθ, we could switch the
order of the game. In particular, we could assume that nature first chooses prior distribution π
on θ, and without seeing θ (but with knowledge of the distribution π) we choose the predictive
distribution Q. This leads to the Bayesian redundancy, which is simply the expected redundancy
we suffer: ∫

Θ
π(θ)Dkl (Pnθ ||Qn) dθ.

However, recalling our calculations with mutual information (equations (7.4.4), (10.1.1), and (10.1.4)),
we know that the Bayes-optimal prediction distribution is Qπn. In particular, if we let T denote
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a random variable distributed according to π, and conditional on T = θ assume that the Xi are
drawn according to Pθ, we have that the mutual information between T and Xn

1 is

Iπ(T ;Xn
1 ) =

∫
π(θ)Dkl (Pnθ ||Qπn) dθ = inf

Q

∫
π(θ)Dkl (Pnθ ||Q) dθ. (19.3.6)

With Theorem 19.5 in hand, we can give a somewhat more nuanced picture of this mutual
information quantity. As a first consequence of Theorem 19.5, we have that

Iπ(T ;Xn
1 ) =

d

2
log

n

2πe
+

∫
log

√
det Iθ
π(θ)

π(θ)dθ + o(1), (19.3.7)

where Iθ denotes the Fisher information matrix for the family {Pθ}θ∈Θ. One strand of Bayesian
statistics—we will not delve too deeply into this now, instead referring to the survey by Bernardo
[25]—known as reference analysis, advocates that in performing a Bayesian analysis, we should
choose the prior π that maximizes the mutual information between the parameters θ about which
we wish to make inferences and any observations Xn

1 available. Moreover, in this set of strategies,
one allows n to tend to ∞, as we wish to take advantage of any data we might actually see. The
asymptotic formula (19.3.7) allows us to choose such a prior.

In a different vein, Jeffreys [93] proposed that if the square root of the determinant of the Fisher
information was integrable, then one should take π as

πjeffreys(θ) =

√
det Iθ∫

Θ

√
det Iθdθ

known as the Jeffreys prior. Jeffreys originally proposed this for invariance reasons, as the infer-
ences made on the parameter θ under the prior πjeffreys are identical to those made on a trans-
formed parameter φ(θ) under the appropriately transformed Jeffreys prior. The asymptotic ex-
pression (19.3.7), however, shows that the Jeffreys prior is the asymptotic reference prior. Indeed,
computing the integral in (19.3.7), we have∫

Θ
π(θ) log

√
det Iθ
π(θ)

dθ =

∫
Θ
π(θ) log

πjeffreys(θ)

π(θ)
dθ + log

∫ √
det Iθdθ

= −Dkl (π||πjeffreys) + log

∫ √
det Iθdθ,

whenever the Jeffreys prior exists. Moreover, we see that in an asymptotic sense, the worst-case
prior distribution π for nature to play is given by the Jeffreys prior, as otherwise the−Dkl (π||πjeffreys)
term in the expected (Bayesian) redundancy is negative.

Example 19.8 (Jeffreys priors and the exponential distribution): Let us now assume that
our source distributions Pθ are exponential distributions, meaning that θ ∈ (0,∞) and we have
density pθ(x) = exp(−θx− log 1

θ ) for x ∈ [0,∞). This is clearly an exponential family model,

and the Fisher information is easy to compute as Iθ = ∂2

∂θ2
log 1

θ = 1/θ2 (cf. Example 16.1).

In this case, the Jeffreys prior is πjeffreys(θ) ∝
√
I = 1/θ, but this “density” does not integrate

over [0,∞). One approach to this difficulty, advocated by Bernardo [25, Definition 3] (among
others) is to just proceed formally and notice that after observing a single datapoint, the
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“posterior” distribution π(θ | X) is well-defined. Following this idea, note that after seeing
some data X1, . . . , Xi, with Si =

∑i
j=1Xj as the partial sum, we have

π(θ | xi1) ∝ pθ(xi1)πjeffreys(θ) = θi exp

(
− θ

i∑
j=1

xj

)
1

θ
= θi−1 exp(−θSi).

Integrating, we have for si =
∑i

j=1 xj

q(x | xi1) =

∫ ∞
0

pθ(x)π(θ | xi1)dθ ∝
∫ ∞

0
θe−θxθi−1e−θsidθ =

1

(si + x)i+1

∫ ∞
0

uie−udu,

where we made the change of variables u = θ(si + x). This is at least a distribution that
normalizes, so often one simply assumes the existence of a piece of fake data. For example, by
saying we “observe” x0 = 1, we have prior proportional to π(θ) = e−θ, which yields redundancy

Dkl

(
Pnθ0 ||Q

π
n

)
=

1

2
log

n

2πe
+ θ0 + log

1

θ0
+ o(1).

The difference is that, in this case, the redundancy bound is no longer uniform in θ0, as it
would be for the true reference (or Jeffreys, if it exists) prior. 3

19.3.2 Redundancy capacity duality

Let us discuss Bayesian redundancy versus worst-case redundancy in somewhat more depth. If we
play a game where nature chooses T according to the known prior π, and draws data Xn

1 ∼ Pθ
conditional on T = θ, then we know that as in expression (19.3.7), we have

inf
Q

Eπ [Dkl (PnT ||Q)] =

∫
Dkl (Pnθ ||Qπn)π(θ)dθ = Iπ(T ;Xn

1 ).

A natural question that arises from this expression is the following: if nature chooses a worst-case
prior, can we swap the order of maximization and minimization? That is, do we ever have the
equality

sup
π
Iπ(T ;Xn

1 ) = inf
Q

sup
θ
Dkl (Pnθ ||Q) ,

so that the worst-case Bayesian redundancy is actually the minimax redundancy? It is clear that
if nature can choose the worst case Pθ after we choose Q, the redundancy must be at least as bad
as the Bayesian redundancy, so

sup
π
Iπ(T ;Xn

1 ) ≤ inf
Q

sup
θ
Dkl (Pnθ ||Q) = inf

Q
Rn(Q,P).

Indeed, if this inequality were an equality, then for the worst-case prior π∗, the mixture Qπ
∗
n would

be minimax optimal.
In fact, the redundancy-capacity theorem, first proved by Gallager [70], and extended by Haus-

sler [81] (among others) allows us to do just that. That is, if we must choose a distribution Q and
then nature chooses Pθ adversarially, we can guarantee to worse redundancy than in the (worst-case)
Bayesian setting. We state a simpler version of the result that holds when the random variables
X take values in finite spaces; Haussler’s more general version shows that the next theorem holds
whenever X ∈ X and X is a complete separable metric space.
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Theorem 19.9 (Gallager [70]). Let X be a random variable taking on a finite number of values
and Θ be a measurable space. Then

sup
π

inf
Q

∫
Dkl (Pθ||Q) dπ(θ) = sup

π
Iπ(T ;X) = inf

Q
sup
θ∈Θ

Dkl (Pθ||Q) .

Moreover, the infimum on the right is uniquely attained by some distribution Q∗, and if π∗ attains
the supremum on the left, then Q∗ =

∫
Pθdπ

∗(θ).

See Section 19.5 for a proof of Theorem 19.9.
This theorem is known as the redundancy-capacity theorem in the literature, because in classical

information theory, the capacity of a noisy channel T → Xn
1 is the maximal mutual informationx

supπ Iπ(T ;Xn
1 ). In the exercises, you explore some robustness properties of the optimal distribution

Qπ in relation to this theorem. In short, though, we see that if there is a capacity achieving
prior, then the associated mixture distribution Qπ is minimax optimal and attains the minimax
redundancy for the game.

19.4 Asymptotic normality and Theorem 19.5

In this section, we very briefly (and very hand-wavily) justify the asymptotic expression (19.3.5).
To do this, we argue that (roughly) the posterior distribution π(θ | Xn

1 ) should be roughly normally
distributed with appropriate variance measure, which gives the result. We now give the intuition for
this statement, first by heuristically deriving the asymptotics of a maximum likelihood estimator,
then by looking at the Bayesian case. (Clarke and Barron [42] provide a fully rigorous proof.)

19.4.1 Heuristic justification of asymptotic normality

First, we sketch the asymptotic normality of the maximum likelihood estimator θ̂, that is, θ̂ is
chosen to maximize log pθ(X

n
1 ). (See, for example, Lehmann and Casella [104] for more rigorous

arguments.) Assume that the data are generated i.i.d. according to Pθ0 . Then by assumption that

θ̂ maximizes the log-likelihood, we have the stationary condition 0 = ∇ log p
θ̂
(Xn

1 ). Performing a
Taylor expansion of this quantity about θ0, we have

0 = ∇ log p
θ̂
(Xn

1 ) = ∇ log pθ0(Xn
1 ) +∇2 log pθ0(Xn

1 )(θ̂ − θ0) +R

where R is a remainder term. Assuming that θ̂ → θ0 at any reasonable rate (this can be made
rigorous), this remainder is negligible asymptotically.

Rearranging this equality, we obtain

θ̂ − θ0 ≈ (−∇2 log pθ0(Xn
1 ))−1∇ log pθ0(Xn

1 )

=
1

n

(
− 1

n

n∑
i=1

∇2 log pθ0(Xi)︸ ︷︷ ︸
≈Iθ0

)−1 n∑
i=1

∇ log pθ0(Xi)

≈ 1

n
I−1
θ0

n∑
i=1

∇ log pθ0(Xi),
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where we have used that the Fisher information Iθ = −Eθ[∇2 log pθ(X)] and the law of large
numbers. By the (multivariate) central limit theorem, we then obtain the asymptotic normality
result

√
n(θ̂ − θ0) ≈ 1√

n
I−1
θ0

n∑
i=1

∇ log pθ0(Xi)
d→ N(0, I−1

θ0
),

where
d→ denotes convergence in distribution, with asymptotic variance

I−1
θ0

Eθ0 [∇ log pθ0(X)∇ log pθ0(X)>]I−1
θ0

= I−1
θ0
Iθ0I

−1
θ0

= I−1
θ0
.

Completely heuristically, we also write

θ̂ “ ∼ ” N(θ0, (nIθ0)−1). (19.4.1)

19.4.2 Heuristic calculations of posterior distributions and redundancy

With the asymptotic distributional heuristic (19.4.1), we now look at the redundancy and posterior
distribution of θ conditioned on the data Xn

1 when the data are drawn i.i.d. Pθ0 . When Qπn is the
mixture distribution associated with π, the posterior density of θ | Xn

1 is

π(θ | Xn
1 ) =

pθ(X
n
1 )π(θ)

qn(Xn
1 )

.

By our heuristic calculation of the MLE, this density (assuming the data overwhelms the prior) is
approximately a normal density with mean θ0 and variance (nIθ0)−1, where we have used expres-
sion (19.4.1). Expanding the redundancy, we obtain

Eθ0
[
log

pθ0(Xn
1 )

qn(Xn
1 )

]
= Eθ0

[
log

p
θ̂
(Xn

1 )π(θ̂)

qn(Xn
1 )

]
+ Eθ0

[
log

1

π(θ̂)

]
+ Eθ0

[
log

pθ0(Xn
1 )

p
θ̂
(Xn

1 )

]
. (19.4.2)

Now we use our heuristic. We have that

Eθ0

[
log

p
θ̂
(Xn

1 )π(θ̂)

qn(Xn
1 )

]
≈ log

1

(2π)d/2 det(nIθ0)−1/2
+ Eθ0

[
−1

2
(θ̂ − θ0)>(nIθ0)−1(θ̂ − θ0)

]
,

by the asymptotic normality result, π(θ̂) = π(θ0) + O(1/
√
n) again by the asymptotic normality

result, and

log p
θ̂
(Xn

1 ) ≈ log pθ0(Xn
1 ) +

( n∑
i=1

∇ log pθ0(Xi)

)>
(θ̂ − θ0)

≈ log pθ0(Xn
1 ) +

( n∑
i=1

∇ log pθ0(Xi)

)>
I−1
θ0

(
1

n

n∑
i=1

∇ log pθ0(Xi)

)
.

Substituting these three into the redundancy expression (19.4.2), we obtain

Eθ0
[
log

pθ0(Xn
1 )

qn(Xn
1 )

]
≈ log

1

(2π)d/2 det(nIθ0)−1/2
+ Eθ0

[
−1

2
(θ̂ − θ0)>(nIθ0)−1(θ̂ − θ0)

]
+ log

1

π(θ0)
− Eθ0

[( n∑
i=1

∇ log pθ0(Xi)

)>
I−1
θ0

(
1

n

n∑
i=1

∇ log pθ0(Xi)

)]

=
d

2
log

n

2π
+

1

2
log det(Iθ0) + log

1

π(θ0)
− d+R,

where R is a remainder term. This gives the major terms in the asymptotic result in Theorem 19.5.
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19.5 Proof of Theorem 19.9

In this section, we prove one version of the strong saddle point results associated with the universal
prediction game as given by Theorem 19.9 (in the case thatX belongs to a finite set). For shorthand,
we recall the definition of the redundancy

Red(Q, θ) := EPθ [− logQ(X) + logPθ(X)] = Dkl (Pθ||Q) ,

where we have assumed that X belongs to a finite set, so that Q(X) is simply the probability of
X. For a given prior distribution π on θ, we define the expected redundancy as

Red(Q, π) =

∫
Dkl (Pθ||Q) dπ(θ).

Our goal is to show that the max-min value of the prediction game is the same as the min-max
value of the game, that is,

sup
π
Iπ(T ;X) = sup

π
inf
Q

Red(Q, π) = inf
Q

sup
θ∈Θ

Red(Q, θ).

Proof We know that the max-min risk (worst-case Bayes risk) of the game is supπ Iπ(T ;X);
it remains to show that this is the min-max risk. To that end, define the capacity of the family
{Pθ}θ∈Θ as

C := sup
π
Iπ(T ;X). (19.5.1)

Notably, this constant is finite (because Iπ(T ;X) ≤ log |X |), and there exists a sequence πn of prior
probabilities such that Iπn(T ;X)→ C. Now, let Q̄ be any cluster point of the sequence of mixtures
Qπn =

∫
Pθdπn(θ); such a point exists because the space of probability distributions on the finite

set X is compact. We will show that∑
x

Pθ(x) log
Pθ(x)

Q̄(x)
≤ C for all θ ∈ Θ, (19.5.2)

and we claim this is sufficient for the theorem. Indeed, suppose that inequality (19.5.2) holds. Then
in this case, we have

inf
Q

sup
θ∈Θ

Red(Q, θ) ≤ sup
θ∈Θ

Red(Q̄, θ) = sup
θ∈Θ

Dkl

(
Pθ||Q̄

)
≤ C,

which implies the theorem, because it is always the case that

sup
π

inf
Q

Red(Q, θ) ≤ inf
Q

sup
π

Red(Q, π) = inf
Q

sup
θ∈Θ

Red(Q, θ).

For the sake of contradiction, let us assume that there exists some θ ∈ Θ such that inequal-
ity (19.5.2) fails, call it θ∗. We will then show that suitable mixtures (1− λ)π + λδθ∗ , where δθ∗ is
the point mass on θ∗, could increase the capacity (19.5.1). To that end, for shorthand define the
mixtures

πn,λ = (1− λ)πn + λδθ∗ and Qπn,λ = (1− λ)Qπn + λPθ∗

for λ ∈ [0, 1]. Let us also use the notation Hw(X | T ) to denote the conditionaly entropy of
the random variable X on T (when T is distributed as w), and we abuse notation by writing
H(X) = H(P ) when X is distributed as P . In this case, it is clear that we have

Hπn,λ(X | T ) = (1− λ)Hπn(X | T ) + λH(X | T = θ∗),
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and by definition of the mutual information we have

Iπn,λ(T ;X) = Hπn,λ(X)−Hπn,λ(X | T )

= H((1− λ)Qπn + λPθ∗)− (1− λ)Hπn(X | T )− λH(X | T = θ∗).

To demonstrate our contradiction, we will show two things: first, that at λ = 0 the limits of both
sides of the preceding display are equal to the capacity C, and second, that the derivative of the
right hand side is positive. This will contradict the definition (19.5.1) of the capacity.

To that end, note that

lim
n
Hπn(X | T ) = lim

n
Hπn(X)− Iπn(T ;X) = H(Q̄)− C,

by the continuity of the entropy function. Thus, we have

lim
n
Iπn,λ(T ;X) = H((1− λ)Q̄+ λPθ∗)− (1− λ)(H(Q̄)− C)− λH(Pθ). (19.5.3)

It is clear that at λ = 0, both sides are equal to the capacity C, while taking derivatives with
respect to λ we have

∂

∂λ
H((1− λ)Q̄+ λPθ∗) = −

∑
x

(Pθ∗(x)− Q̄(x)) log
(
(1− λ)Q̄(x) + λPθ∗(x)

)
.

Evaluating this derivative at λ = 0, we find

∂

∂λ
lim
n
Iπn,λ(T ;X)

∣∣∣∣
λ=0

= −
∑
x

Pθ∗(x) log Q̄(x) +
∑
x

Q̄(x) log Q̄(x) +H(Q̄)− C +
∑
x

Pθ∗(x) logPθ∗(x)

=
∑
x

Pθ∗(x) log
Pθ∗(x)

Q̄(x)
− C.

In particular, if inequality (19.5.2) fails to hold, then ∂
∂λ limn Iπn,λ(T ;X)|λ=0 > 0, contradicting the

definition (19.5.1) of the channel capacity.
The uniqueness of the result follows from the strict convexity of the mutual information I in

the mixture channel Q̄.
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Chapter 20

Universal prediction with other losses

Thus far, in our discussion of universal prediction and related ideas, we have focused (essentially)
exclusively on making predictions with the logarithmic loss, so that we play a full distribution over
the set X as our prediction at each time step in the procedure. This is natural in settings, such as
coding (recall examples 15.5 and 19.1), in which the log loss corresponds to a quantity we directly
care about, or when we do not necessarily know much about the task at hand but rather wish
to simply model a process. (We will see this more shortly.) In many cases, however, we have a
natural task-specific loss. The natural question that follows, then, is to what extent it is possible
to extend the results of Chapter 19 to different settings in which we do not necessarily care about
prediction of an entire distribution. (Relevant references include the paper of Cesa-Bianchi and
Lugosi [39], which shows how complexity measures known as Rademacher complexity govern the
regret in online prediction games; the book by the same authors [40], which gives results covering a
wide variety of online learning, prediction, and other games; the survey by Merhav and Feder [112];
and the study of consequences of the choice of loss for universal prediction problems by Haussler
et al. [82].)

20.1 Redudancy and expected regret

We begin by considering a generalization of the redundancy (19.1.3) to the case in which we do not
use the log loss. In particular, we have as usual a space X and a loss function L : X ×X → R, where
L(x̂, x) is the penalty we suffer for playing x̂ when the instantaneous data is x. (In somewhat more
generality, we may allow the loss to act on X̂ × X , where the prediction space X̂ may be different
from X .) As a simple example, consider a weather prediction problem, where Xi ∈ {0, 1} indicates
whether it rained on day i and X̂i denotes our prediction of whether it will rain. Then a natural
loss includes L(x̂, x) = 1 {x̂ · x ≤ 0}, which simply counts the number of mistaken predictions.

Given the loss L, our goal is to minimize the expected cumulative loss
n∑
i=1

EP [L(X̂i, Xi)],

where X̂i are the predictions of the procedure we use and P is the distribution generating the data
Xn

1 . In this case, if the distribution P is known, it is clear that the optimal strategy is to play the
Bayes-optimal prediction

X∗i ∈ argmin
x∈X̂

EP [L(x,Xi) | Xi−1
1 ] = argmin

x∈X̂

∫
X
L(x, xi)dP (xi | Xi−1

1 ). (20.1.1)
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In many cases, however, we do not know the distribution P , and so our goal (as in the previous chap-
ter) is to simultaneously minimize the cumulative loss simultaneously for all source distributions in
a family P.

20.1.1 Universal prediction via the log loss

As our first idea, we adapt the same strategies as those in the previous section, using a distribution
Q that has redundancy growing only sub-linearly against the class P, and making Bayes optimal
predictions with Q. That is, at iteration i, we assume that Xi ∼ Q(· | Xi−1

1 ) and play

X̂i ∈ argmin
x∈X̂

EQ[L(x,Xi) | Xi−1
1 ] =

∫
X
L(x, xi)dQ(xi | Xi−1

1 ). (20.1.2)

Given such a distribution Q, we measure its loss-based redundancy against P via

Redn(Q,P,L) := EP

[
n∑
i=1

L(X̂i, Xi)−
n∑
i=1

L(X∗i , Xi)

]
, (20.1.3)

where X̂i chosen according to Q(· | Xi−1
1 ) as in expression (20.1.2). The natural question now, of

course, is whether the strategy (20.1.2) has redundancy growing more slowly than n.
It turns out that in some situations, this is the case: we have the following theorem [112, Section

III.A.2], which only requires that the usual redundancy (19.1.3) (with log loss) is sub-linear and the
loss is suitably bounded. In the theorem, we assume that the class of distributions P = {Pθ}θ∈Θ is
indexed by θ ∈ Θ.

Theorem 20.1. Assume that the redundancy Redn(Q,Pθ) ≤ Rn(θ) and that |L(x̂, x)−L(x∗, x)| ≤ L
for all x and predictions x̂, x∗. Then we have

1

n
Redn(Q,Pθ, L) ≤ L

√
2

n
Rn(θ).

To attain vanishing expected regret under the loss L, then, Theorem 20.1 requires only that we
play a Bayes’ strategy (20.1.2) with a distribution Q for which the average (over n) of the usual
redundancy (19.1.3) tends to zero, so long as the loss is (roughly) bounded. We give two examples of
bounded losses. First, we might consider the 0-1 loss, which clearly satisfies |L(x̂, x)−L(x∗, x)| ≤ 1.
Second, the absolute value loss (which is used for robust estimation of location parameters [116, 87]),
given by L(x̂, x) = |x− x̂|, satisfies |L(x̂, x)−L(x∗, x)| ≤ |x̂−x∗|. If the distribution Pθ has median
θ and Θ is compact, then E[|x̂ −X|] is minimized by its median, and |x̂ − x∗| is bounded by the
diameter of Θ.
Proof The theorem is essentially a consequence of Pinsker’s inequality (Proposition 2.10). By
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expanding the loss-based redundancy, we have the following chain of equalities:

Redn(Q,Pθ, L) =

n∑
i=1

Eθ[L(X̂i, Xi)]− Eθ[L(X∗i , Xi)]

=

n∑
i=1

∫
X i−1

pθ(x
i−1
1 )

∫
X
pθ(xi | xi−1

1 )
[
L(X̂i, xi)− L(X∗i , xi)

]
dxidx

i−1
1

=
n∑
i=1

∫
X i−1

pθ(x
i−1
1 )

∫
X

(pθ(xi | xi−1
1 )− q(xi | xi−1

1 ))
[
L(X̂i, xi)− L(X∗i , xi)

]
dxidx

i−1
1

+
n∑
i=1

∫
X i−1

pθ(x
i−1
1 )EQ[L(X̂i, Xi)− L(X∗i , Xi) | xi−1

1 ]︸ ︷︷ ︸
≤0

dxi−1
1 , (20.1.4)

where for the inequality we used that the play X̂i minimizes

EQ[L(X̂i, Xi)− L(X∗i , Xi) | Xi−1
1 ]

by the construction (20.1.2).
Now, using Hölder’s inequality on the innermost integral in the first sum of expression (20.1.4),

we have ∫
X

(pθ(xi | xi−1
1 )− q(xi | xi−1

1 ))
[
L(X̂i, xi)− L(X∗i , xi)

]
dxi

≤ 2
∥∥Pθ(· | xi−1

1 )−Q(· | xi−1
1 )

∥∥
TV

sup
x∈X
|L(X̂i, x)− L(X∗i , x)|

≤ 2L
∥∥Pθ(· | xi−1

1 )−Q(· | xi−1
1 )

∥∥
TV

,

where we have used the definition of total variation distance. Combining this inequality with (20.1.4),
we obtain

Redn(Q,Pθ, L) ≤ 2L

n∑
i=1

∫
X i−1

pθ(x
i−1
1 )

∥∥Pθ(· | xi−1
1 )−Q(· | xi−1

1 )
∥∥

TV
dxi−1

1

(?)

≤ 2L
n∑
i=1

(∫
X i−1

pθ(x
i−1
1 )dxi−1

1

) 1
2
(∫
X i−1

pθ(x
i−1
1 )

∥∥Pθ(· | xi−1
1 )−Q(· | xi−1

1 )
∥∥2

TV

) 1
2

= 2L
n∑
i=1

(∫
X i−1

pθ(x
i−1
1 )

∥∥Pθ(· | xi−1
1 )−Q(· | xi−1

1 )
∥∥2

TV

) 1
2

,

where the inequality (?) follows by the Cauchy-Schwarz inequality applied to the integrands
√
pθ

and
√
pθ ‖P −Q‖TV. Applying the Cauchy-Schwarz inequality to the final sum, we have

Redn(Q,Pθ, L) ≤ 2L
√
n

( n∑
i=1

∫
X i−1

pθ(x
i−1
1 )

∥∥Pθ(· | xi−1
1 )−Q(· | xi−1

1 )
∥∥2

TV

) 1
2

(??)

≤ 2L
√
n

(
1

2

n∑
i=1

∫
X i−1

pθ(x
i−1
1 )Dkl

(
Pθ(· | xi−1

1 )||Q(· | xi−1
1 )

)
dxi−1

1

) 1
2

= L
√

2n
√
Dkl

(
Pnθ ||Q

)
,
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where inequality (??) is an application of Pinsker’s inequality. But of course, we know by that
Redn(Q,Pθ) = Dkl (Pnθ ||Q) by definition (19.1.3) of the redundancy.

Before proceding to examples, we note that in a variety of cases the bounds of Theorem 20.1 are
loose. For example, under mean-squared error, universal linear predictors [51, 120] have redundancy
O(log n), while Theorem 20.1 gives at best a bound of O(

√
n).

TODO: Add material on redundancy/capacity (Theorem 19.9) analogue in general loss case,
which allows playing mixture distributions based on mixture of {Pθ}θ∈Θ.

20.1.2 Examples

We now give an example application of Theorem 20.1 with an application to a classification problem
with side information. In particular, let us consider the 0-1 loss `0−1(ŷ, y) = 1 {ŷ · y ≤ 0}, and
assume that we wish to predict y based on a vector x ∈ Rd of regressors that are fixed ahead of
time. In addition, we assume that the “true” distribution (or competitor) Pθ is that given x and
θ, Y has normal distribution with mean 〈θ, x〉 and variance σ2, that is,

Yi = 〈θ, xi〉+ εi, εi
iid∼ N(0, σ2).

Now, we consider playing according to a mixture distribution (19.3.3), and for our prior π we choose
θ ∼ N(0, τ2Id×d), where τ > 0 is some parameter we choose.

Let us first consider the case in which we observe Y1, . . . , Yn directly (rather than simply whether
we classify correctly) and consider the prediction scheme this generates. First, we recall as in the
posterior calculation (19.3.4) that we must calculate the posterior on θ given Y1, . . . , Yi at step i+1.
Assuming we have computed this posterior, we play

Ŷi := argmin
y∈R

EQπ [`0−1(y, Yi) | Y i−1
1 ] = argmin

y∈R
Qπ(sign(Yi) 6= sign(y) | Y i−1

1 )

= argmin
y∈R

∫ ∞
−∞

Pθ(sign(Yi) 6= sign(y))π(θ | Y i−1
1 )dθ. (20.1.5)

With this in mind, we begin by computing the posterior distribution on θ:

Lemma 20.2. Assume that θ has prior N(0, τ2Id×d). Then conditional on Y i
1 = yi1 and the first i

vectors xi1 = (x1, . . . , xi) ⊂ Rd, we have

θ | yi1, xi1 ∼ N

K−1
i

i∑
j=1

xjyj ,K
−1
i

 , where Ki =
1

τ2
Id×d +

1

σ2

i∑
j=1

xjx
>
j .

Deferring the proof of Lemma 20.2 temporarily, we note that under the distribution Qπ, as by
assumption we have Yi = 〈θ, xi〉 + εi, the posterior distribution (under the prior π for θ) on Yi+1

conditional on Y i
1 = yii and x1, . . . , xi+1 is

Yi+1 = 〈θ, xi+1〉+ εi+1 | yi1, x1
i ∼ N

(〈
xi+1,K

−1
i

i∑
j=1

xjyj

〉
, x>i+1K

−1
i xi+1 + σ2

)
.
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Consequently, if we let θ̂i+1 be the posterior mean of θ | yi1, xii (as given by Lemma 20.2), the optimal

prediction (20.1.5) is to choose any Ŷi+1 satisfying sign(Ŷi+1) = sign(〈xi+1, θ̂i+1〉). Another option
is to simply play

Ŷi+1 = x>i+1K
−1
i

( i∑
j=1

yjxj

)
, (20.1.6)

which is E[Ŷi+1 | Y i
1 , X

i+1
1 ] = E[〈θ,Xi+1〉 | Y i

1 , X
i
1], because this Ŷi+1 has sign that is most probable

for Yi+1 (under the mixture Qπ).
Let us now evaluate the 0-1 redundancy of the prediction scheme (20.1.6). We first compute

the Fisher information for the distribution Yi ∼ N(〈θ, xi〉, σ2). By a straightforward calculation, we
have Iθ = 1

σ2X
>X, where the matrix X ∈ Rn×d is the data matrix X = [x1 · · · xn]>. Then for

any θ0 ∈ Rd, Theorem 19.5 implies that for the prior π(θ) = 1
(2πτ2)d/2

exp(− 1
2τ2
‖θ‖22), we have (up

to constant factors) the redundancy bound

Redn(Qπ, Pθ0) . d log n+ d log τ +
1

τ2
‖θ0‖22 + log det(σ−2X>X).

Thus the expected regret under the 0-1 loss `0−1 is

Redn(Qπ, Pθ0 , `0−1) .
√
n

√
d log n+ d log(στ) +

1

τ2
‖θ0‖22 + log det(X>X) (20.1.7)

by Theorem 20.1. We can provide some intuition for this expected regret bound. First, for any θ0,
we can asymptotically attain vanishing expected regret, though larger θ0 require more information
to identify. In addition, the less informative the prior is (by taking τ ↑ +∞), the less we suffer by
being universal to all θ0, but there is logarithmic penalty in τ . We also note that the bound (20.1.7)
is not strongly universal, because by taking ‖θ0‖ → ∞ we can make the bound vacuous.

We remark in passing that we can play a similar game when all we observe are truncated (signed)
normal random variables, that is, we see only sign(Yi) rather than Yi. Unfortunately, in this case,
there is no closed form for the posterior updates as in Lemma 20.2. That said, it is possible to play
the game using sampling (Monte Carlo) or other strategies.

Finally, we prove Lemma 20.2:
Proof We use Bayes rule, ignoring normalizing constants that do not depend on θ. In this case,
we have the posterior distribution proportional to the prior times the likelihood, so

π(θ | yi1, xi1) ∝ π(θ)
n∏
i=1

pθ(yi | xi) ∝ exp

− 1

2τ2
‖θ‖22 −

1

2σ2

i∑
j=1

(yj − 〈xj , θ〉)2

 .

Now, we complete the square in the exponent above, which yields

1

2τ2
‖θ‖22 +

1

2σ2

i∑
j=1

(yj − 〈xj , θ〉)2 =
1

2
θ>

 1

τ2
Id×d +

1

σ2

i∑
j=1

xjx
>
j

 θ − θ>
i∑

j=1

yjxj + C

=
1

2

θ −K−1
i

i∑
j=1

yjxj

>Ki

θ −K−1
i

i∑
j=1

yjxj

+ C ′,

where C,C ′ are constants depending only on the yi1 and not xi1 or θ, and we have recalled the
definition of Ki = τ−2Id×d + σ−2

∑i
j=1 xjx

>
j . By inspection, this implies our desired result.
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20.2 Individual sequence prediction and regret

Having discussed (in some minor detail) prediction games under more general losses in an expected
sense, we now consider the more adversarial sense of Section 19.2, where we wish to compete against
a family of prediction strategies and the data sequence observed is chosen adversarially. In this
section, we look into the case in which the comparison class—set of strategies against which we
wish to compete—is finite.

As a first observation, in the redundancy setting, we see that when the class P = {Pθ}θ∈Θ has
|Θ| <∞, then the redundancy capacity theorem (Theorem 19.9) implies that

inf
Q

sup
θ∈Θ

Redn(Q,Pθ) = inf
Q

sup
θ∈Θ

Dkl (Pnθ ||Q) = sup
π
Iπ(T ;Xn

1 ) ≤ log |Θ|,

where T ∼ π and conditioned on T = θ we draw Xn
1 ∼ Pθ. (Here we have used that I(T ;Xn

1 ) =
H(T )−H(T | Xn

1 ) ≤ H(T ) ≤ log |Θ|, by definition (2.1.3) of the mutual information.) In particular,
the redundancy is constant for any n.

Now we come to our question: is this possible in a purely sequential case? More precisely,
suppose we wish to predict a sequence of variables yi ∈ {−1, 1}, we have access to a finite collection
of strategies, and we would like to guarantee that we perform as well in prediction as any single
member of this class. Then, while it is not possible to achieve constant regret, it is possible to have
regret that grows only logarithmically in the number of comparison strategies. To establish the
setting, let us denote our collection of strategies, henceforth called “experts”, by {xi,j}dj=1, where
i ranges in 1, . . . , n. Then at iteration i of the prediction game, we measure the loss of expert j by
L(xi,j , y).

We begin by considering a mixture strategy that would be natural under the logarithmic loss,
we assume the experts play points xi,j ∈ [0, 1], where xi,j = P (Yi = 1) according to expert j.
(We remark in passing that while the notation is perhaps not completely explicit about this, the
experts may adapt to the sequence Y n

1 .) In this case, the loss we suffer is the usual log loss,
L(xi,j , y) = y log 1

xi,j
+ (1 − y) log 1

1−xi,j . Now, if we assume we begin with the uniform prior

distribution π(j) = 1/d for all j, then the posterior distribution, denoted by πij = π(j | Y i−1
1 ), is

πij ∝ π(j)
i∏
l=1

xyll,j(1− xl,j)
1−yl = π(j) exp

(
−

i∑
l=1

[
yl log

1

xl,j
+ (1− yl) log

1

1− xl,j

])

= π(j) exp

(
−

i∑
l=1

L(xl,j , yl)

)
.

This strategy suggests what is known variously as the multiplicative weights strategy [8], exponenti-
ated gradient descent method [95], or (after some massaging) a method known since the late 1970s as
the mirror descent or non-Euclidean gradient descent method (entropic gradient descent) [113, 23].

In particular, we consider an algorithm for general losses where fix a stepsize η > 0 (as we cannot
be as aggressive as in the probabilistic setting), and we then weight each of the experts j by expo-
nentially decaying the weight assigned to the expert for the losses it has suffered. For the algorithm
to work, unfortunately, we need a technical condition on the loss function and experts xi,j . This
loss function is analogous to a weakened version of exp-concavity, which is a common assumption
in online game playing scenarios (see the logarithmic regret algorithms developed by Hazan et al.
[83], as well as earlier work, for example, that by Kivinen and Warmuth [96] studying regression
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problems for which the loss is strongly convex in one variable but not simultaneously in all). In
particular, exp-concavity is the assumption that

x 7→ exp(−L(x, y))

is a concave function. Because the exponent of the logarithm is linear, the log loss is obviously
exp-concave, but for alternate losses, we make a slightly weaker assumption. In particular, we
assume there are constants c, η such that for any vector π in the d-simplex (i.e. π ∈ Rd+ satisfies∑d

j=1 πj = 1) there is some way to choose ŷ so that for any y (that can be played in the game)

exp

(
−1

c
L(ŷ, y)

)
≥

d∑
j=1

πj exp(−ηL(xi,j , y)) or L(ŷ, y) ≤ −c log

 d∑
j=1

πj exp(−ηL(xi,j , y))

 .

(20.2.1)
By inspection, inequality (20.2.1) holds for the log loss with c = η = 1 and the choice ŷ =∑d

j=1 πjxi,j , because of the exp-concavity condition; any exp-concave loss also satisfies inequal-

ity (20.2.1) with c = η = 1 and the choice of the posterior mean ŷ =
∑d

j=1 πjxi,j . The idea in
this case is that losses satisfying inequality (20.2.1) behave enough like the logarithmic loss that a
Bayesian updating of the experts works. (Condition (20.2.1) originates with the work of Haussler
et al. [82], where they name such losses (c, η)-realizable.)

Example 20.3 (Squared error and exp-concavity): Consider the squared error loss L(ŷ, y) =
1
2(ŷ − y)2, where ŷ, y ∈ R. We claim that if xj ∈ [0, 1] for each j, π is in the simplex, meaning∑
j πj = 1 and πj ≥ 0, and y ∈ [0, 1], then the squared error π 7→ L(〈π, x〉, y) is exp-concave,

that is, inequality (20.2.1) holds with c = η = 1 and ŷ = 〈π, x〉. Indeed, computing the Hessian
of the exponent, we have

∇2
π exp

(
−1

2
(〈π, x〉 − y)2

)
= ∇π

[
− exp

(
−1

2
(〈π, x〉 − y)2

)
(〈π, x〉 − y)x

]
= exp

(
−1

2
(〈π, x〉 − y)2

)(
(〈π, x〉 − y)2 − 1

)
xx>.

Noting that |〈π, x〉 − y| ≤ 1 yields that (〈π, x〉 − y)2 − 1 ≤ 0, so we have

∇2
π exp

(
−1

2
(〈π, x〉 − y)2

)
� 0d×d

under the setting of the example. We thus have exp-concavity as desired. 3

We can also show that the 0-1 loss satisfies the weakened version of exp-concavity in inequal-
ity (20.2.1), but we have to take the constant c to be larger (or η to be smaller).

Example 20.4 (Zero-one loss and weak exp-concavity): Now suppose that we use the 0-1
loss, that is, `0−1(ŷ, y) = 1 {y · ŷ ≤ 0}. We claim that if we take a weighted majority vote
under the distribution π, meaning that we set ŷ =

∑d
j=1 πj sign(xj) for a vector x ∈ Rd, then

inequality (20.2.1) holds with any c large enough that

c−1 ≤ log
2

1 + e−η
. (20.2.2)
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Demonstrating inequality (20.2.2) is, by inspection, equivalent to showing that

`0−1(ŷ, y) ≤ −c log

( d∑
j=1

πje
−η`0−1(xj ,y)

)
.

If ŷ has the correct sign, meaning that sign(ŷ) = sign(y), the result is trivial. If sign(ŷ) is not
equal to sign(y) ∈ {−1, 1}, then we know at least (by the weights πj) half of the values xj have
incorrect sign. Thus

d∑
j=1

πje
−η`0−1(xj ,y) =

∑
j:xjy≤0

πje
−η +

∑
j:xjy>0

πj ≤
1

2
e−η +

1

2
.

Thus, to attain

`0−1(ŷ, y) = 1 ≤ −c log

( d∑
j=1

πje
−η`0−1(xj ,y)

)
it is sufficient that

1 ≤ −c log

(
1 + e−η

2

)
≤ −c log

( d∑
j=1

πje
−η`0−1(xj ,y)

)
, or c−1 ≤ log

(
2

1 + e−η

)
.

This is our desired claim (20.2.2). 3

Having given general conditions and our motivation of exponential weighting scheme in the case
of the logarithmic loss, we arrive at our algorithm. We simply weight the experts by exponentially
decaying the losses they suffer. We begin the procedure by initializing a weight vector w ∈ Rd with
wj = 1 for j = 1, . . . , d. After this, we repeat the following four steps at each time i, beginning
with i = 1:

1. Set wij = exp
(
−η
∑i−1

l=1 L(xl,j , yl)
)

2. Set W i =
∑d

j=1w
i
j and πij = wij/W

i for each j ∈ {1, . . . , d}

3. Choose ŷi satisfying (20.2.1) for the weighting π = πi and expert values {xi,j}dj=1

4. Observe yi and suffer loss L(ŷi, yi)

With the scheme above, we have the following regret bound.

Theorem 20.5 (Haussler et al. [82]). Assume condition (20.2.1) holds and that ŷi is chosen by the
above scheme. Then for any j ∈ {1, . . . , d} and any sequence yn1 ∈ Rn,

n∑
i=1

L(ŷi, yi) ≤ c log d+ cη
n∑
i=1

L(xi,j , yi).

Proof This is an argument based on potentials. At each iteration, any loss we suffer implies that
the potential W i must decrease, but it cannot decrease too quickly (as otherwise the individual
predictors xi,j would suffer too much loss). Beginning with condition (20.2.1), we observe that

L(ŷi, yi) ≤ −c log

 d∑
j=1

πij exp(−ηL(xi,j , yi))

 = −c log

(
W i+1

W i

)
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Summing this inequality from i = 1 to n and using that W 1 = d, we have

n∑
i=1

L(ŷi, yi) ≤ −c log

(
Wn+1

W 1

)
= c log d− c log

 d∑
j=1

exp

(
−η

n∑
i=1

L(xi,j , yi)

)
≤ c log d− c log exp

(
−η

n∑
i=1

L(xi,j , yi)

)
,

where the inequality uses that exp(·) is increasing. As log exp(a) = a, this is the desired result.

We illustrate the theorem by continuing Example 20.4, showing how Theorem 20.5 gives a regret
guarantee of at most

√
n log d for any set of at most d experts and any sequence yn1 ∈ Rn under the

zero-one loss.

Example (Example 20.4 continued): By substituting the choice c−1 = log 2
1+e−η into the

regret guarantee of Theorem 20.5 (which satisfies inequality (20.2.1) by our guarantee (20.2.2)
from Example 20.4), we obtain

n∑
i=1

`0−1(ŷi, yi)− `0−1(xi,j , yi) ≤
log d

log 2
1+e−η

+

(
η − log 2

1+e−η

)∑n
i=1 `0−1(xi,j , yi)

log 2
1+e−η

.

Now, we make an asymptotic expansion to give the basic flavor of the result (this can be made
rigorous, but it is sufficient). First, we note that

log
2

1 + e−η
≈ η

2
− η2

8
,

and substituting this into the previous display, we have regret guarantee

n∑
i=1

`0−1(ŷi, yi)− `0−1(xi,j , yi) .
log d

η
+ η

n∑
i=1

`0−1(xi,j , yi). (20.2.3)

By making the choice η ≈
√

log d/n and noting that `0−1 ≤ 1, we obtain

n∑
i=1

`0−1(ŷi, yi)− `0−1(xi,j , yi) .
√
n log d

for any collection of experts and any sequence yn1 . 3

We make a few remarks on the preceding example to close the chapter. First, ideally we would
like to attain adaptive regret guarantees, meaning that the regret scales with the performance of
the best predictor in inequality (20.2.3). In particular, we might expect that a good expert would
satisfy

∑n
i=1 `0−1(xi,j , yi)� n, which—if we could choose

η ≈
(

log d∑n
i=1 `0−1(xi,j∗ , yi)

) 1
2

,
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where j∗ = argminj
∑n

i=1 `0−1(xi,j , yi)—then we would attain regret bound√√√√log d ·
n∑
i=1

`0−1(xi,j∗ , yi)�
√
n log d.

For results of this form, see, for example, Cesa-Bianchi et al. [41] or the more recent work on mirror
descent of Steinhardt and Liang [129].

Secondly, we note that it is actually possible to give a regret bound of the form (20.2.3) without
relying on the near exp-concavity condition (20.2.1). In particular, performing mirror descent on
the convex losses defined by

π 7→
∣∣∣∣ d∑
j=1

sign(xi,j)πj − sign(yi)

∣∣∣∣,
which is convex, will give a regret bound of

√
n log d for the zero-one loss as well. We leave this

exploration to the interested reader.
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Chapter 21

Online convex optimization

A related notion to the universal prediction problem with alternate losses is that of online learning
and online convex optimization, where we modify the requirements of Chapter 20 further. In the
current setting, we essentially do away with distributional assumptions at all, including prediction
with a distribution, and we consider the following two player sequential game: we have a space W
in which we—the learner or first player—can play points w1, w2, . . ., while nature plays a sequence
of loss functions Lt :W → R. The goal is to guarantee that the regret

n∑
t=1

[
Lt(wt)− Lt(w?)

]
(21.0.1)

grows at most sub-linearly with n, for any w? ∈ W (often, we desire this guarantee to be uniform).
As stated, this goal is too broad, so in this chapter we focus on a few natural restrictions, namely,
that the sequence of losses Lt are convex, and W is a convex subset of Rd. In this setting, the
problem (21.0.1) is known as online convex programming.

21.1 The problem of online convex optimization

Before proceeding, we provide a few relevant definitions to make our discussion easier; we refer to
Appendix A for an overview of convexity and proofs of a variety of useful properties of convex sets
and functions. First, we recall that a set W is convex if for all λ ∈ [0, 1] and w,w′ ∈ W, we have

λw + (1− λ)w′ ∈ W.

Similarly, a function f is convex if

f(λw + (1− λ)w′) ≤ λf(w) + (1− λ)f(w′)

for all λ ∈ [0, 1] and w,w′. The subgradient set, or subdifferential, of a convex function f at the
point w is defined to be

∂f(w) := {g ∈ Rd : f(v) ≥ f(w) + 〈g, v − w〉 for all v},

and we say that any vector g ∈ Rd satisfying f(v) ≥ f(w) + 〈g, v−w〉 for all v is a subgradient. For
convex functions, the subdifferential set ∂f(w) is essentially always non-empty for any w ∈ dom f .1

1Rigorously, we are guaranteed that ∂f(w) 6= ∅ at all points w in the relative interior of the domain of f .
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We now give several examples of convex functions, losses, and corresponding subgradients. The
first two examples are for classification problems, in which we receive data points x ∈ Rd and wish
to predict associated labels y ∈ {−1, 1}.

Example 21.1 (Support vector machines): In the support vector machine problem, we
receive data in pairs (xt, yt) ∈ Rd × {−1, 1}, and the loss function

Lt(w) = [1− yt〈w, xt〉]+ = max{1− yt〈w, xt〉, 0},

which is convex because it is the maximum of two linear functions. Moreover, the subgradient
set is

∂Lt(w) =


−ytxt if yt〈w, xt〉 < 1

−λ · ytxt for λ ∈ [0, 1] if yt〈w, xt〉 = 1

0 otherwise.

3

Example 21.2 (Logistic regression): As in the support vector machine, we receive data in
pairs (xt, yt) ∈ Rd × {−1, 1}, and the loss function is

Lt(w) = log(1 + exp(−yt〈xt, w〉)).

To see that this loss is convex, note that if h(t) = log(1 + et), then h′(t) = 1
1+e−t and h′′(t) =

e−t

(1+e−t)2 ≥ 0, and Lt is the composition of a linear transformation with h. In this case,

∂Lt(w) = ∇Lt(w) = − 1

1 + eyt〈xt,w〉
ytxt.

3

Example 21.3 (Expert prediction and zero-one error): By randomization, it is possible to
cast certain non-convex optimization problems as convex. Indeed, let us assume that there
are d experts, each of which makes a prediction xt,j (for j = 1, . . . , d) at time t, represented
by the vector xt ∈ Rd, of a label yt ∈ {−1, 1}. Each also suffers the (non-convex) loss
`0−1(xt,j , yt) = 1 {xt,jyt ≤ 0}. By assigning a weight wj to each expert xt,j subject to the
constraint that w � 0 and 〈w,1〉 = 1, then if we were to randomly choose to predict using
expert j with probability wj , we would suffer expected loss at time t of

Lt(w) =

d∑
j=1

wj`0−1(xt,j , yt) = 〈gt, w〉,

where we have defined the vector gt = [`0−1(xt,j , yt)]
d
j=1 ∈ {0, 1}d. Notably, the expected zero-

one loss is convex (even linear), so that its online minimization falls into the online convex
programming framework. 3

As we see in the sequel, online convex programming approaches are often quite simple, and, in
fact, are often provably optimal in a variety of scenarios outside of online convex optimization. This
motivates our study, and we will see that online convex programming approaches have a number of
similarities to our regret minimization approaches in previous chapters on universal coding, regret,
and redundancy.
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21.2 Online gradient and non-Euclidean gradient (mirror) descent

We now turn to an investigation of the single approach we will use to solve online convex opti-
mization problems, which is known as mirror descent.2 Before describing the algorithm in its full
generality, however, we first demonstrate a special case (though our analysis will be for the general
algorithm).

Roughly, the intuition for our procedures is as follows: after observing a loss Lt, we make a
small update to move our estimate wt in a direction to improve the value of the losses we have
seen. However, so that we do not make progress too quickly—or too aggressively follow spurious
information—we attempt to keep new iterates close to previous iterates. With that in mind, we
present (projected) online gradient descent, which requires only that we specify a sequence ηt of
non-increasing stepsizes.

Input: Parameter space W, stepsize sequence ηt.
Repeat: for each iteration t, predict wt ∈ W, receive function Lt and suffer loss Lt(wt).
Compute any gt ∈ ∂Lt(wt), and perform subgradient update

wt+ 1
2

= wt − ηtgt, wt+1 = ProjW(wt+ 1
2
), (21.2.1)

where ProjW denotes (Euclidean) projection onto W.

Figure 21.1: Online projected gradient descent.

An equivalent formulation of the update (21.2.1) is to write it as the single step

wt+1 = argmin
w∈W

{
〈gt, w〉+

1

2ηt
‖w − wt‖22

}
, (21.2.2)

which makes clear that we trade between improving performance on Lt via the linear approximation
of Lt(w) ≈ Lt(wt)+g>t (w−wt) and remaining close to wt according to the Euclidean distance ‖·‖2.
In a variety of scenarios, however, it is quite advantageous to measure distances in a way more
amenable to the problem structure, for example, if W is a probability simplex or we have prior
information about the loss functions Lt that nature may choose. With this in mind, we present a
slightly more general algorithm, which requires us to give a few more definitions.

Given a convex differentiable function ψ : Rd → R, we define the Bregman divergence associated
with ψ by

Bψ(w, v) = ψ(w)− ψ(v)− 〈∇ψ(v), w − v〉. (21.2.3)

The Bregman divergence is always non-negative, as Bψ(w, v) is the gap between the true function
value ψ(w) and its linear approximation at the point v (see Figure 21.2). A few examples illustrate
its properties.

Example 21.4 (Euclidean distance as Bregman divergence): Take ψ(w) = 1
2 ‖w‖

2
2 to obtain

B(w, v) = 1
2 ‖w − v‖

2
2. More generally, if for a matrix A we define ‖w‖2A = w>Aw, then takin

ψ(w) = 1
2w
>Aw, we have

Bψ(w, v) =
1

2
(w − v)>A(w − v) =

1

2
‖w − v‖2A .

So Bregman divergences generalize (squared) Euclidean distance. 3

2The reasons for this name are somewhat convoluted, and we do not dwell on them.
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(v, ψ(v))

Bψ(w, v)

(w,ψ(w))

Figure 21.2: Illustration of Bregman divergence.

Example 21.5 (KL divergence as a Bregman divergence): Take ψ(w) =
∑d

j=1wj logwj .

Then ψ is convex over the positive orthant Rd+ (the second derivative of w logw is 1/w), and
for w, v ∈ ∆d = {u ∈ Rd+ : 〈1, u〉 = 1}, we have

Bψ(w, v) =
∑
j

wj logwj −
∑
j

vj log vj −
∑
j

(1 + log vj)(wj − vj) =
∑
j

wj log
wj
vj

= Dkl (w||v) ,

where in the final equality we treat w and v as probability distributions on {1, . . . , d}. 3

With these examples in mind, we now present the mirror descent algorithm, which is the natural
generalization of online gradient descent.

Input: proximal function ψ, parameter space W, and non-increasing stepsize sequence
η1, η2, . . ..
Repeat: for each iteration t, predict wt ∈ W, receive function Lt and suffer loss Lt(wt).
Compute any gt ∈ ∂Lt(wt), and perform non-Euclidean subgradient update

wt+1 = argmin
w∈W

{
〈gt, w〉+

1

ηt
Bψ(w,wt)

}
. (21.2.4)

Figure 21.3: The online mirror descent algorithm

Before providing the analysis of Algorithm 21.3, we give a few examples of its implementation.
First, by taking W = Rd and ψ(w) = 1

2 ‖w‖
2
2, we note that the mirror descent procedure simply

corresponds to the gradient update wt+1 = wt−ηtgt. We can also recover the exponentiated gradient
algorithm, also known as entropic mirror descent.
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Example 21.6 (Exponentiated gradient algorithm): Suppose that we have W = ∆d = {w ∈
Rd+ : 〈1, w〉 = 1}, the probability simplex in Rd. Then a natural choice for ψ is the negative
entropy, ψ(w) =

∑
j wj logwj , which (as noted previously) gives Bψ(w, v) =

∑
j wj log

wj
vj

.

We now consider the update step (21.2.4). In this case, fixing v = wt for notational simplicity,
we must solve

minimize 〈g, w〉+
1

η

∑
j

wj log
wj
vj

subject to w ∈ ∆d

in w. Writing the Lagrangian for this problem after introducing multipliers τ ∈ R for the
contraint that 〈1, w〉 = 1 and λ ∈ Rd+ for w � 0, we have

L(w, λ, τ) = 〈g, w〉+
1

η

d∑
j=1

wj log
wj
vj
− 〈λ,w〉+ τ(〈1, w〉 − 1),

which is minimized by taking

wj = vj exp(−ηgj + λjη − τη − 1),

and as wj > 0 certainly, the constraint w � 0 is inactive and λj = 0. Thus, choosing τ to
normalize the wj , we obtain the exponentiated gradient update

wt+1,i =
wt,ie

−ηtgt,i∑
j wt,je

−ηtgt,j for i = 1, . . . , d,

as the explicit calculation of the mirror descent update (21.2.4). 3

We now turn to an analysis of the mirror descent algorithm. Before presenting the analysis, we
require two more definitions that allow us to relate Bregman divergences to various norms.

Definition 21.1. Let ‖·‖ be a norm. The dual norm ‖·‖∗ associated with ‖·‖ is

‖y‖∗ := sup
x:‖x‖≤1

x>y.

For example, a straightforward calculation shows that the dual to the `∞-norm is the `1-norm,
and the Euclidean norm ‖·‖2 is self-dual (by the Cauchy-Schwarz inequality). Lastly, we require a
definition of functions of suitable curvature for use in mirror descent methods.

Definition 21.2. A convex function f : Rd → R is strongly convex with respect to the norm ‖·‖
over the set W if for all w, v ∈ W and g ∈ ∂f(w) we have

f(v) ≥ f(w) + 〈g, v − w〉+
1

2
‖w − v‖2 .

That is, the function f is strongly convex if it grows at least quadratically fast at every point in its
domain. It is immediate from the definition of the Bregman divergence that ψ is strongly convex
if and only if

Bψ(w, v) ≥ 1

2
‖w − v‖2 .

As two examples, we consider Euclidean distance and entropy. For the Euclidean distance, which
uses ψ(w) = 1

2 ‖w‖
2
2, we have ∇ψ(w) = w, and

1

2
‖v‖22 =

1

2
‖w + v − w‖22 =

1

2
‖w‖22 + 〈w, v − w〉+

1

2
‖w − v‖22

by a calculation, so that ψ is strongly convex with respect to the Euclidean norm. We also have
the following observation.
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Observation 21.7. Let ψ(w) =
∑

j wj logwj be the negative entropy. Then ψ is strongly convex
with respect to the `1-norm, that is,

Bψ(w, v) = Dkl (w||v) ≥ 1

2
‖w − v‖21 .

Proof The result is an immediate consequence of Pinsker’s inequality, Proposition 2.10.

With these examples in place, we present the main theorem of this section.

Theorem 21.8 (Regret of mirror descent). Let Lt be an arbitrary sequence of convex functions,
and let wt be generated according to the mirror descent algorithm 21.3. Assume that the proximal
function ψ is strongly convex with respect to the norm ‖·‖, which has dual norm ‖·‖∗. Then

(a) If ηt = η for all t, then for any w? ∈ W,

n∑
t=1

[Lt(wt)− Lt(w?)] ≤
1

η
Bψ(w?, w1) +

η

2

n∑
t=1

‖gt‖2∗ .

(b) If W is compact and Bψ(w?, w) ≤ R2 for any w ∈ W, then

n∑
t=1

[Lt(wt)− Lt(w?)] ≤
1

2ηn
R2 +

n∑
t=1

ηt
2
‖gt‖2∗ .

Before proving the theorem, we provide a few comments to exhibit its power. First, we consider
the Euclidean case, where ψ(w) = 1

2 ‖w‖
2
2, and we assume that the loss functions Lt are all L-

Lipschitz, meaning that |Lt(w) − Lt(v)| ≤ L ‖w − v‖2, which is equivalent to ‖gt‖2 ≤ L for all
gt ∈ ∂Lt(w). In this case, the two regret bounds above become

1

2η
‖w? − w1‖22 +

η

2
nL2 and

1

2ηn
R2 +

n∑
t=1

ηt
2
L2,

respectively, where in the second case we assumed that ‖w? − wt‖2 ≤ R for all t. In the former
case, we take η = R

L
√
n

, while in the second, we take ηt = R
L
√
t
, which does not require knowledge

of n ahead of time. Focusing on the latter case, we have the following corollary.

Corollary 21.9. Assume that W ⊂ {w ∈ Rd : ‖w‖2 ≤ R} and that the loss functions Lt are
L-Lipschitz with respect to the Euclidean norm. Take ηt = R

L
√
t
. Then for all w? ∈ W,

n∑
t=1

[Lt(wt)− Lt(w?)] ≤ 3RL
√
n.

Proof For any w,w? ∈ W, we have ‖w − w?‖2 ≤ 2R, so that Bψ(w?, w) ≤ 4R2. Using that

n∑
t=1

t−
1
2 ≤

∫ n

0
t−

1
2dt = 2

√
n

gives the result.

260



Stanford Statistics 311/Electrical Engineering 377 John Duchi

Now that we have presented the Euclidean variant of online convex optimization, we turn to an
example that achieves better performance in high dimensional settings, as long as the domain is
the probability simplex. (Recall Example 21.3 for motivation.) In this case, we have the following
corollary to Theorem 21.8.

Corollary 21.10. Assume that W = ∆d = {w ∈ Rd+ : 〈1, w〉 = 1} and take the proximal function
ψ(w) =

∑
j wj logwj to be the negative entropy in the mirror descent procedure 21.3. Then with the

fixed stepsize η and initial point as the uniform distribution w1 = 1/d, we have for any sequence of
convex losses Lt

n∑
t=1

[Lt(wt)− Lt(w?)] ≤
log d

η
+
η

2

n∑
t=1

‖gt‖2∞ .

Proof Using Pinsker’s inequality in the form of Observation 21.7, we have that ψ is strongly
convex with respect to ‖·‖1. Consequently, taking the dual norm to be the `∞-norm, part (a) of
Theorem 21.8 shows that

n∑
t=1

[Lt(wt)− Lt(w?)] ≤
1

η

d∑
j=1

w?j log
w?j
w1,j

+
η

2

n∑
t=1

‖gt‖2∞ .

Noting that with w1 = 1/d, we have Bψ(w?, w1) ≤ log d for any w? ∈ W gives the result.

Corollary 21.10 yields somewhat sharper results than Corollary 21.9, though in the restricted
setting that W is the probability simplex in Rd. Indeed, let us assume that the subgradients
gt ∈ [−1, 1]d, the hypercube in Rd. In this case, the tightest possible bound on their `2-norm is
‖gt‖2 ≤

√
d, while ‖gt‖∞ ≤ 1 always. Similarly, ifW = ∆d, then while we are only guaranteed that

‖w? − w1‖2 ≤ 1. Thus, the best regret guaranteed by the Euclidean case (Corollary 21.9) is

1

2η
‖w? − w1‖22 +

η

2
nd ≤

√
nd with the choice η =

1√
nd
,

while the entropic mirror descent procedure (Alg. 21.3 with ψ(w) =
∑

j wj logwj) guarantees

log d

η
+
η

2
n ≤

√
2n log d with the choice η =

√
2 log d

2
√
n

. (21.2.5)

The latter guarantee is exponentially better in the dimension. Moreover, the key insight is that
we essentially maintain a “prior,” and then perform “Bayesian”-like updating of the posterior
distribution wt at each time step, exactly as in the setting of redundancy minimization.

21.2.1 Proof of Theorem 21.8

The proof of the theorem proceeds in three lemmas, which are essentially inductive applications of
optimality conditions for convex optimization problems. The first is the explicit characterization
of optimality for a convex optimization problem. (For a proof of this lemma, see, for example, the
books of Hiriart-Urruty and Lemaréchal [84, 85], or Section 2.5 of Boyd et al. [32].)

Lemma 21.11. Let h : Rd → R be a convex function and W be a convex set. Then w? minimizes
h(w) over W if and only if there exists g ∈ ∂h(w?) such that

〈g, w − w?〉 ≥ 0 for all w ∈ W.
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Lemma 21.12. Let Lt :W → R be any sequence of convex loss functions and ηt be a non-increasing
sequence, where η0 =∞. Then with the mirror descent strategy (21.2.4), for any w? ∈ W we have

n∑
t=1

Lt(wt)− Lt(w?) ≤
n∑
t=1

(
1

ηt
− 1

ηt−1

)
Bψ(w?, wt) +

n∑
t=1

[
− 1

ηt
Bψ(wt+1, wt) + 〈gt, wt − wt+1〉

]
.

Proof Our proof follows by the application of a few key identities. First, we note that by
convexity, we have for any gt ∈ ∂Lt(wt) that

Lt(wt)− Lt(w?) ≤ 〈gt, wt − w?〉. (21.2.6)

Secondly, we have that because wt+1 minimizes

〈gt, w〉+
1

ηt
Bψ(w,wt)

over w ∈ W, then Lemma 21.11 implies

〈ηtgt +∇ψ(wt+1)−∇ψ(wt), w − wt+1〉 ≥ 0 for all w ∈ W. (21.2.7)

Taking w = w? in inequality (21.2.7) and making a substitution in inequality (21.2.6), we have

Lt(wt)− Lt(w?) ≤ 〈gt, wt − w?〉 = 〈gt, wt+1 − w?〉+ 〈gt, wt − wt+1〉

≤ 1

ηt
〈∇ψ(wt+1)−∇ψ(wt), w

? − wt+1〉+ 〈gt, wt − wt+1〉

=
1

ηt
[Bψ(w?, wt)−Bψ(w?, wt+1)−Bψ(wt+1, wt)] + 〈gt, wt − wt+1〉 (21.2.8)

where the final equality (21.2.8) follows from algebraic manipulations of Bψ(w,w′). Summing
inequality (21.2.8) gives

n∑
t=1

Lt(wt)− Lt(w?) ≤
n∑
t=1

1

ηt
[Bψ(w?, wt)−Bψ(w?, wt+1)−Bψ(wt+1, wt)] +

n∑
t=1

〈gt, wt − wt+1〉

=
n∑
t=2

(
1

ηt
− 1

ηt−1

)
Bψ(w?, wt) +

1

η1
Bψ(w?, w1)− 1

ηn
Bψ(w?, wn+1)

+

n∑
t=1

[
− 1

ηt
Bψ(wt+1, wt) + 〈gt, wt − wt+1〉

]
as desired.

It remains to use the negative terms −Bψ(wt, wt+1) to cancel the gradient terms 〈gt, wt−wt+1〉.
To that end, we recall Definition 21.1 of the dual norm ‖·‖∗ and the strong convexity assumption
on ψ. Using the Fenchel-Young inequality, we have

〈gt, wt − wt+1〉 ≤ ‖gt‖∗ ‖wt − wt+1‖ ≤
ηt
2
‖gt‖2∗ +

1

2ηt
‖wt − wt+1‖2 .

Now, we use the strong convexity condition, which gives

− 1

ηt
Bψ(wt+1, wt) ≤ −

1

2ηt
‖wt − wt+1‖2 .

Combining the preceding two displays in Lemma 21.12 gives the result of Theorem 21.8.
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21.3 Online to batch conversions

Martingales!

21.4 More refined convergence guarantees

It is sometimes possible to give more refined bounds than those we have so far provided. As
motivation, let us revisit Example 21.3, but suppose that one of the experts has no loss—that
is, it makes perfect predictions. We might expect—accurately!—that we should attain better
convergence guarantees using exponentiated weights, as the points wt be maintain should quickly
eliminate non-optimal experts.

To that end, we present a refined regret bound for the mirror descent algorithm 21.3 with the
entropic regularization ψ(w) =

∑
j wj logwj .

Proposition 21.13. Let ψ(w) =
∑

j wj logwj, and assume that the losses Lt are such that their
subgradients have all non-negative entries, that is, gt ∈ ∂Lt(w) implies gt � 0. For any such
sequence of loss functions Lt and any w? ∈ W = ∆d,

n∑
t=1

[Lt(wt)− Lt(w?)] ≤
log d

η
+
η

2

n∑
t=1

d∑
j=1

wt,jg
2
t,j .

While as stated, the bound of the proposition does not look substantially more powerful than
Corollary 21.10, but a few remarks will exhibit its consequences. We prove the proposition in
Section 21.4.1 to come.

First, we note that because wt ∈ ∆d, we will always have
∑

j wt,jg
2
t,j ≤ ‖gt‖

2
∞. So certainly

the bound of Proposition 21.13 is never worse than that of Corollary 21.10. Sometimes this can
be made tighter, however, as exhibited by the next corollary, which applies (for example) to the
experts setting of Example 21.3. More specifically, we have d experts, each suffering losses in [0, 1],
and we seek to predict with the best of the d experts.

Corollary 21.14. Consider the linear online convex optimization setting, that is, where Lt(wt) =
〈gt, wt〉 for vectors gt, and assume that gt ∈ Rd+ with ‖gt‖∞ ≤ 1. In addition, assume that we know
an upper bound L?n on

∑n
t=1 Lt(w

?). Then taking the stepsize η = min{1,
√

log d/
√
L?n}, we have

n∑
t=1

[Lt(wt)− Lt(w?)] ≤ 3 max
{

log d,
√
L?n log d

}
.

Note that when Lt(w
?) = 0 for all w?, which corresponds to a perfect expert in Example 21.3,

the upper bound becomes constant in n, yielding 3 log d as a bound on the regret. Unfortunately,
in our bound of Corollary 21.14, we had to assume that we knew ahead of time a bound on the
loss of the best predictor w?, which is unrealistic in practice. There are a number of techniques for
dealing with such issues, including a standard one in the online learning literature known as the
doubling trick. We explore some in the exercises.
Proof First, we note that

∑
j wjg

2
t,j ≤ 〈w, gt〉 for any nonnegative vector w, as gt,j ∈ [0, 1]. Thus,

Proposition 21.13 gives

n∑
t=1

[Lt(wt)− Lt(w?)] ≤
log d

η
+
η

2

n∑
t=1

〈wt, gt〉 =
log d

η
+
η

2

n∑
t=1

Lt(wt).
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Rearranging via an algebraic manipulation, this is equivalent to(
1− η

2

) n∑
t=1

[Lt(wt)− Lt(w?)] ≤
log d

η
+
η

2

n∑
t=1

Lt(w
?).

Take η = min{1,
√

log d/L?n}. Then if
√

log d/L?n ≤ 1, we have that the right hand side of the
above inequality becomes

√
L?n log d+ 1

2

√
L?n log d. On the other hand, if L?n < log d, then the right

hand side of the inequality becomes log d + 1
2L

?
n ≤ 3

2 log d. In either case, we obtain the desired
result by noting that 1− η

2 ≥
1
2 .

21.4.1 Proof of Proposition 21.13

Our proof relies on a technical lemma, after which the derivation is a straightforward consequence
of Lemma 21.12. We first state the technical lemma, which applies to the update that the expo-
nentiated gradient procedure makes.

Lemma 21.15. Let ψ(x) =
∑

j xj log xj, and let x, y ∈ ∆d be defined by

yi =
xi exp(−ηgi)∑
j xj exp(−ηgj)

,

where g ∈ Rd+ is non-negative. Then

−1

η
Bψ(y, x) + 〈g, x− y〉 ≤ η

2

d∑
i=1

g2
i xi.

Deferring the proof of the lemma, we note that it precisely applies to the setting of Lemma 21.12.
Indeed, with a fixed stepsize η, we have

n∑
t=1

Lt(wt)− Lt(w?) ≤
1

η
Bψ(w?, w1) +

n∑
t=1

[
−1

η
Bψ(wt+1, wt) + 〈gt, wt − wt+1〉

]
.

Earlier, we used the strong convexity of ψ to eliminate the gradient terms 〈gt, wt−wt+1〉 using the
bregman divergence Bψ. This time, we use Lemma 21.12: setting y = wt+1 and x = wt yields the
bound

n∑
t=1

Lt(wt)− Lt(w?) ≤
1

η
Bψ(w?, w1) +

n∑
t=1

η

2

d∑
i=1

g2
t,iwt,i

as desired.
Proof of Lemma 21.15 We begin by noting that a direct calculation yields Bψ(y, x) =
Dkl (y||x) =

∑
i yi log yi

xi
. Substituting the values for x and y into this expression, we have

∑
i

yi log
yi
xi

=
∑
i

yi log

(
xi exp(−ηgi)

xi(
∑

j exp(−ηgj)xj)

)
= −η〈g, y〉 −

∑
i

yi log
(∑

j

xje
−ηgj

)
.
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Now we use a Taylor expansion of the function g 7→ log(
∑

j xje
−ηgj ) around the point 0. If we

define the vector p(g) by pi(g) = xie
−ηgi/(

∑
j xje

−ηgj ), then

log
(∑

j

xje
−ηgj

)
= log(〈1, x〉)− η〈p(0), g〉+

η2

2
g>(diag(p(g̃))− p(g̃)p(g̃)>)g,

where g̃ = λg for some λ ∈ [0, 1]. Noting that p(0) = x and 〈1, x〉 = 〈1, y〉 = 1, we obtain

Bψ(y, x) = −η〈g, y〉+ log(1) + η〈g, x〉 − η2

2
g>(diag(p(g̃))− p(g̃)p(g̃)>)g,

whence

− 1

η
Bψ(y, x) + 〈g, x− y〉 ≤ η

2

d∑
i=1

g2
i pi(g̃). (21.4.1)

Lastly, we claim that the function

s(λ) =

d∑
i=1

g2
i

xie
−λgi∑

j xje
−λgj

is non-increasing on λ ∈ [0, 1]. Indeed, we have

s′(λ) =
(
∑

i gixie
−λgi)(

∑
i g

2
i xie

−λgi)

(
∑

i xie
−λgi)2

−
∑

i g
3
i xie

−λgi∑
i xie

−λgi
=

∑
ij gig

2
jxixje

−λgi−λgj −
∑

ij g
3
i xixje

−λgi−λgj

(
∑

i xie
−λgi)2

.

Using the Fenchel-Young inequality, we have ab ≤ 1
3 |a|

3 + 2
3 |b|

3/2 for any a, b, so gig
2
j ≤ 1

3g
3
i + 2

3g
3
j .

This implies that the numerator in our expression for s′(λ) is non-positive. Thus we have s(λ) ≤
s(0) =

∑d
i=1 g

2
i xi, which gives the result when combined with inequality (21.4.1).
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Chapter 22

Exploration, exploitation, and bandit
problems

Consider the following problem: we have a possible treatment for a population with a disease, but
we do not know whether the treatment will have a positive effect or not. We wish to evaluate the
treatment to decide whether it is better to apply it or not, and we wish to optimally allocate our
resources to attain the best outcome possible. There are challenges here, however, because for each
patient, we may only observe the patient’s behavior and disease status in one of two possible states—
under treatment or under control—and we wish to allocate as few patients to the group with worse
outcomes (be they control or treatment) as possible. This balancing act between exploration—
observing the effects of treatment or non-treatment—and exploitation—giving treatment or not as
we decide which has better palliative outcomes—underpins and is the paridigmatic aspect of the
multi-armed bandit problem.1

Our main focus in this chapter is a fairly simple variant of the K-armed bandit problem, though
we note that there is a substantial literature in statistics, operations research, economics, game
theory, and computer science on variants of the problems we consider. In particular, we consider the
following sequential decision making scenario. We assume that there are K distributions P1, . . . , PK
on R, which we identify (with no loss of generality) with K random variables Y1, . . . , YK . Each
random variable Yi has mean µi and is σ2-sub-Gaussian, meaning that

E [exp (λ(Yi − µi))] ≤ exp

(
λ2σ2

2

)
. (22.0.1)

The goal is to find the index i with the maximal mean µi without evaluating sub-optimal “arms”
(or random variables Yi) too often. At each iteration t of the process, the player takes an action
At ∈ {1, . . . ,K}, then, conditional on i = At, observes a reward Yi(t) drawn independently from
the distribution Pi. Then the goal is to minimize the the regret after n steps, which is

Regn :=
n∑
t=1

µi? − µAt , (22.0.2)

1The problem is called the bandit problem in the literature because we imagine a player in a casino, choosing
between K different slot machines (hence a K-armed bandit, as this is a casino and the player will surely lose
eventually), each with a different unknown reward distribution. The player wishes to put as much of his money as
possible into the machine with the greatest expected reward.
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where i? ∈ argmaxi µi so µi? = maxi µi. The regret Regn as defined is a random quantity, so we
generally seek to give bounds on its expectation or high-probability guarantees on its value. In this
chapter, we generally focus for simplicity on the expected regret,

Regn := E
[ n∑
t=1

µi? − µAt
]
, (22.0.3)

where the expectation is taken over any randomness in the player’s actions At and in the repeated
observations of the random variables Y1, . . . , YK .

22.1 Confidence-based algorithms

A natural first strategy to consider is one based on confidence intervals with slight optimism.
Roughly, if we believe the true mean µi for an arm i lies within [µ̂i − ci, µ̂i + ci], where ci is some
interval (whose length decreases with time t), then we optimistically “believe” that the value of
arm i is µ̂i + ci; then at iteration t, as our action At we choose the arm whose optimistic mean is
the highest, thus hoping to maximize our received reward.

This strategy lies at the heart of the Upper Confidence Bound (UCB) family of algorithms, due
to [12], a simple variant of which we describe here. Before continuing, we recall the standard result
on sub-Gaussian random variables of Corollary 3.9 in our context, though we require a somewhat
more careful calculation because of the sequential nature of our process. Let Ti(t) = card{τ ≤ t :
Aτ = i} denote the number of times that arm i has been pulled by time t of the bandit process.
Then if we define

µ̂i(t) :=
1

Ti(t)

∑
τ≤t,Aτ=i

Yi(τ),

to be the running average of the rewards of arm i at time t (computed only on those instances in
which arm i was selected), we claim that for all i and all t,

P

µ̂i(t) ≥ µi +

√
σ2 log 1

δ

Ti(t)

 ∨ P

µ̂i(t) ≤ µi −
√
σ2 log 1

δ

Ti(t)

 ≤ δ. (22.1.1)

That is, so long as we pull the arms sufficiently many times, we are unlikely to pull the wrong arm.
We prove the claim (22.1.1) in the appendix to this chapter.

Here then is the UCB procedure:

Input: Sub-gaussian parameter σ2 and sequence of deviation probabilities δ1, δ2, . . ..
Initialization: Play each arm i = 1, . . . ,K once
Repeat: for each iteration t, play the arm maximizing

µ̂i(t) +

√
σ2 log 1

δt

Ti(t)
.

Figure 22.1: The Upper Confidence Bound (UCB) Algorithm

If we define
∆i := µi? − µi
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to be the gap in means between the optimal arm and any sub-optimal arm, we then obtain the
following guarantee on the expected number of pulls of any sub-optimal arm i after n steps.

Proposition 22.1. Assume that each of the K arms is σ2-sub-Gaussian and let the sequence
δ1 ≥ δ2 ≥ · · · be non-increasing and positive. Then for any n and any arm i 6= i?,

E[Ti(n)] ≤

⌈
4σ2 log 1

δn

∆2
i

⌉
+ 2

n∑
t=2

δt.

Proof Without loss of generality, we assume arm 1 satisfies µ1 = maxi µi, and let arm i be any
sub-optimal arm. The key insight is to carefully consider what occurs if we play arm i in the UCB
procedure of Figure 22.1. In particular, if we play arm i at time t, then we certainly have

µ̂i(t) +

√
σ2 log 1

δt

Ti(t)
≥ µ̂1(t) +

√
σ2 log 1

δt

T1(t)
.

For this to occur, at least one of the following three events must occur (we suppress the dependence
on i for each of them):

E1(t) :=

µ̂i(t) ≥ µi +

√
σ2 log 1

δt

Ti(t)

 , E2(t) :=

µ̂1(t) ≤ µ1 −

√
σ2 log 1

δt

T1(t)

 ,

E3(t) :=

∆i ≤ 2

√
σ2 log 1

δt

Ti(t)

 .

Indeed, suppose that none of the events E1, E2, E3 occur at time t. Then we have

µ̂i(t) +

√
σ2 log 1

δt

Ti(t)
< µi + 2

√
σ2 log 1

δt

Ti(t)
< µi + ∆i = µ1 < µ̂1(t) +

√
σ2 log 1

δt

T1(t)
,

the inequalities following by E1, E3, and E2, respectively.
Now, for any l ∈ {1, . . . , n}, we see that

E[Ti(n)] =
n∑
t=1

E[1 {At = i}] =
n∑
t=1

E[1 {At = i, Ti(t) > l}+ 1 {At = i, Ti(t) ≤ l}]

≤ l +
n∑

t=l+1

P(At = i, Ti(t) > l).

Now, we use that δt is non-increasing, and see that if we set

l? =

⌈
4
σ2 log 1

δn

∆2
i

⌉
,

then to have Ti(t) > l? it must be the case that E3(t) cannot occur—that is, we would have

2
√
σ2 log 1

δt
/Ti(t) > 2

√
σ2 log 1

δt
/l ≥ ∆i. Thus we have

E[Ti(n)] =

n∑
t=1

E[1 {At = i}] ≤ l? +

n∑
t=l?+1

P(At = i, E3(t) fails)

≤ l? +
n∑

t=l?+1

P(E1(t) or E2(t)) ≤ l? +
n∑

t=l?+1

2δt.
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This implies the desired result.

Naturally, the number of times arm i is selected in the sequential game is related to the regret
of a procedure; indeed, we have

Regn =

n∑
t=1

(µi? − µAt) =

K∑
i=1

(µi? − µi)Ti(n) =

K∑
i=1

∆iTi(n).

Using this identity, we immediately obtain two theorems on the (expected) regret of the UCB
algorithm.

Theorem 22.2. Let δt = δ/t2 for all t. Then for any n ∈ N the UCB algorithm attains

Regn ≤
∑
i 6=i?

4σ2[2 log n− log δ]

∆i
+
π2 − 2

3

( K∑
i=1

∆i

)
δ +

K∑
i=1

∆i.

Proof First, we note that

E[∆iTi(n)] ≤ ∆i

⌈
4σ2 log

1

δn
/∆2

i

⌉
+ 2∆i

n∑
t=2

δ

t2
≤

4σ2 log 1
δn

∆i
+ ∆i + 2∆i

n∑
t=2

δ

t2

by Proposition 22.1. Summing over i 6= i? and noting that
∑

t≥2 t
−2 = π2/6−1 gives the result.

Let us unpack the bound of Theorem 22.2 slightly. First, we make the simplifying assumption
that δt = 1/t2 for all t, and let ∆ = mini 6=i? ∆i. In this case, we have expected regret bounded by

Regn ≤ 8
Kσ2 log n

∆
+
π2 + 1

3

K∑
i=1

∆i.

So we see that the asymptotic regret with this choice of δ scales as (Kσ2/∆) log n, roughly linear
in the classes, logarithmic in n, and inversely proportional to the gap in means. As a concrete
example, if we know that the rewards for each arm Yi belong to the interval [0, 1], then Hoeffding’s
lemma (recall Example 3.6) states that we may take σ2 = 1/4. Thus the mean regret becomes at
most

∑
i:∆i>0

2 logn
∆i

(1 + o(1)), where the o(1) term tends to zero as n→∞.

If we knew a bit more about our problem, then by optimizing over δ and choosing δ = σ2/∆,
we obtain the upper bound

Regn ≤ O(1)

[
Kσ2

∆
log

n∆

σ2
+K

maxi ∆i

mini ∆i

]
, (22.1.2)

that is, the expected regret scales asymptotically as (Kσ2/∆) log(n∆
σ2 )—linearly in the number of

classes, logarithmically in n, and inversely proportional to the gap between the largest and other
means.

If any of the gaps ∆i → 0 in the bound of Theorem 22.2, the bound becomes vacuous—it simply
says that the regret is upper bounded by infinity. Intuitively, however, pulling a slightly sub-optimal
arm should be insignificant for the regret. With that in mind, we present a slight variant of the
above bounds, which has a worse scaling with n—the bound scales as

√
n rather than log n—but

is independent of the gaps ∆i.
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Theorem 22.3. If UCB is run with parameter δt = 1/t2, then

Regn ≤
√

8Kσ2n log n+ 4
K∑
i=1

∆i.

Proof Fix any γ > 0. Then we may write the regret with the standard identity

Regn =
∑
i 6=i?

∆iTi(n) =
∑

i:∆i≥γ
∆iTi(n) +

∑
i:∆i<γ

∆iTi(n) ≤
∑

i:∆i≥γ
∆iTi(n) + nγ,

where the final inequality uses that certainly
∑K

i=1 Ti(n) ≤ n. Taking expectations with our UCB
procedure and δ = 1, we have by Theorem 22.2 that

Regn ≤
∑

i:∆i≥γ
∆i

8σ2 log n

∆2
i

+
π2 + 1

3

K∑
i=1

∆i + nγ ≤ K 8σ2 log n

γ
+ nγ +

π2 + 1

3

K∑
i=1

∆i,

Optimizing over γ by taking γ =

√
8Kσ2 logn√

n
gives the result.

Combining the above two theorems, we see that the UCB algorithm with parameters δt = 1/t2

automatically achieves the expected regret guarantee

Regn ≤ C ·min

 ∑
i:∆i>0

σ2 log n

∆i
,
√
Kσ2n log n

 . (22.1.3)

That is, UCB enjoys some adaptive behavior. It is not, however, optimal; there are algorithms,
including Audibert and Bubeck’s MOSS (Minimax Optimal in the Stochastic Case) bandit proce-
dure [11], which achieve regret

Regn ≤ C ·min

{√
Kn,

K

∆
log

n∆2

K

}
,

which is essentially the bound specified by inequality (22.1.2) (which required knowledge of the
∆is) and an improvement by log n over the analysis of Theorem 22.3. It is also possible to provie
a high-probability guarantee for the UCB algorithms, which follows essentially immediately from
the proof techniques of Proposition 22.1, but we leave this to the interested reader.

22.2 Bayesian approaches to bandits

The upper confidence bound procedure, while elegant and straightforward, has a variety of competi-
tors, including online gradient descent approaches and a variety of Bayesian strategies. Bayesian
strategies—because they (can) incorporate prior knowledge—have the advantage that they sug-
gest policies for exploration and trading between regret and information; that is, they allow us
to quantify a value for information. They often yield very simple procedures, allowing simpler
implementations.

In this section, we thus consider the following specialized setting; there is substantially more
possible here. We assume that there is a finite set of actions (arms) A as before, and we have a
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collection of distributions P = {Pθ}θ∈Θ parameterized by a set Θ (often, this is some subset of RK
when we look at K-armed bandit problems with card(A) = K, but we stay in this abstract setting
temporarily). We also have a loss function L : A × Θ → R that measure the quality of an action
a ∈ A for the parameter θ.

Example 22.4 (Classical Bernoulli bandit problem): The classical bandit problem, as in the
UCB case of the previous section, has actions (arms) A = {1, . . . ,K}, and the parameter space
Θ = [0, 1]K , and we have that Pθ is a distribution on Y ∈ {0, 1}K , where Y has independent
coordinates 1, . . . ,K with P (Yj = 1) = θj , that is, Yj ∼ Bernoulli(θj). The goal is to find the
arm with highest mean reward, that is, argmaxj θj , and thus possible loss functions include
L(a, θ) = −θa or, if we wish the loss to be positive, L(a, θ) = 1− θa ∈ [0, 1]. 3

Lastly, in this Bayesian setting, we require a prior distribution π on the space Θ, where π(Θ) = 1.
We then define the Bayesian regret as

Regn(A, L, π) = Eπ
[ n∑
t=1

L(At, θ)− L(A?, θ)

]
, (22.2.1)

where A? ∈ argmina∈A L(a, θ) is the minimizer of the loss, and At ∈ A is the action the player
takes at time t of the process. The expectation (22.2.1) is taken both over the randomness in θ
according to the prior π and any randomness in the player’s strategy for choosing the actions At
at each time.

Our approaches in this section build off of those in Chapter 19, except that we no longer fully
observe the desired observations Y—we may only observe YAt(t) at time t, which may provide less
information. The broad algorithmic framework for this section is as follows. We now give several

Input: Prior distribution π on space Θ, family of distributions P = {Pθ}θ∈Θ

Repeat: for each iteration t, choose distribution πt on space Θ (based on history
YA1(1), . . . , YAt−1(t− 1)). Draw

θt ∼ πt.

Play action At ∈ A minimizing
L(a, θt)

over a ∈ A, observe YAt(t).

Figure 22.2: The generic Bayesian algorithm

concrete instantiations of this broad procedure, as well as tools (both information-theoretic and
otherwise) for its analysis.

22.2.1 Posterior (Thompson) sampling

The first strategy we consider is perhaps the simplest; in Algorithm 22.2, it corresponds to using
πt to be the posterior distribution on θ conditional on the history YA1(1), . . . , YAt−(t− 1). That is,
we let

Ht := {A1, YA1(1), A2, YA2(2), . . . , At, YAt(t)}
denote the history (or the σ-field thereof) of the procedure and rewards up to time t. Then at
iteration t, we use the posterior

πt(θ) = π(θ | Ht−1),
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the distribution on θ conditional on Ht−1. This procedure was originally proposed by Thompson
[131] in 1933 in the first paper on bandit problems. There are several analyses of Thompson (and
related Bayesian) procedures possible; our first analysis proceeds by using confidence bounds, while
our later analyses give a more information theoretic analysis.

First, we provide a more concrete specification of Algorithm 22.2 for Thompson (posterior)
sampling in the case of Bernoulli rewards.

Example 22.5 (Thompson sampling with Bernoulli penalities): Let us suppose that the
vector θ ∈ [0, 1]K , and we draw θi ∼ Beta(1, 1), which corresponds to the uniform distribution
on [0, 1]d. The actions available are simply to select one of the coordinates, a ∈ A = {1, . . . ,K},
and we observe Ya ∼ Bernoulli(θa), that is, P(Ya = 1 | θ) = θa. That is, L(a, θ) = θa. Let
T 1
a (t) = card{τ ≤ t : At = a, Ya(τ) = 1} be the number of times arm a is pulled and results in

a loss of 1 by time t, and similarly let T 0
a (t) = card{τ ≤ t : At = a, Ya(τ) = 0}. Then, recalling

Example 19.6 on Beta-Bernoulli distributions, Thompson sampling proceeds as follows:

(1) For each arm a ∈ A = {1, . . . ,K}, draw θa(t) ∼ Beta(1 + T 1
a (t), 1 + T 0

a (t)).

(2) Play the action At = argmina θa(t).

(3) Observe the loss YAt(t) ∈ {0, 1}, and increment the appropriate count.

Thompson sampling is simple in this case, and it is implementable with just a few counters.
3

We may extend Example 22.5 to the case in which the losses come from any distribution with mean
θi, so long as the distribution is supported on [0, 1]. In particular, we have the following example.

Example 22.6 (Thompson sampling with bounded random losses): Let us again consider the
setting of Example 22.5, except that the observed losses Ya(t) ∈ [0, 1] with E[Ya | θ] = θa. The
following modification allows us to perform Thompson sampling in this case, even without
knowing the distribution of Ya | θ: instead of observing a loss Ya ∈ {0, 1}, we construct a
random observation Ỹa ∈ {0, 1} with the property that P(Ỹa = 1 | Ya) = Ya. Then the losses
L(a, θ) = θa are identical, and the posterior distribution over θ is still a Beta distribution. We
simply redefine

T 0
a (t) := card{τ ≤ t : At = a, Ỹa(τ) = 0} and T 1

a (t) := card{τ ≤ t : At = a, Ỹa(τ) = 0}.

The Thompson sampling procedure is otherwise identical. 3

Our first analysis shows that Thompson sampling can guarantee performance similar to (or
in some cases, better than) confidence-based procedures, which we do by using a sequence of
(potential) lower and upper bounds on the losses of actions. (Recall we wish to minimize our
losses, so that we would optimistically play those arms with the lowest estimated loss.) This
analysis is based on that of Russo and Van Roy [123]. Let Lt : A → R and Ut : A → R be an
arbitrary sequence of (random) functions that are measurable with respect to Ht−1, that is, they
are constructed based only on {A1, YA1(1), . . . , At−1, YAt−1(t − 1)}. Then we can decompose the
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Bayesian regret (22.2.1) as

Regn(A, L, π) = Eπ
[ n∑
t=1

L(At, θ)− L(A?, θ)

]
(22.2.2)

=
n∑
t=1

Eπ[Ut(At)− Lt(At)] +
n∑
t=1

Eπ[L(At, θ)− Ut(At)] +
n∑
t=1

Eπ[Lt(At)− L(A?, θ)]

(i)
=

n∑
t=1

Eπ[Ut(At)− Lt(At)] +
n∑
t=1

Eπ[L(At, θ)− Ut(At)] +
n∑
t=1

Eπ[Lt(A
?
t )− L(A?t , θ)],

where in equality (i) we used that conditional on Ht−1, At and A?t = A? have the same distribution,
as we sample from the posterior π(θ | Ht−1), and Lt is a function of Ht−1. With the decomposi-
tion (22.2.2) at hand, we may now provide an expected regret bound for Thompson (or posterior)
sampling. We remark that the behavior of Thompson sampling is independent of these upper and
lower bounds Ut, Lt we have chosen—they are simply an artifact to make analysis easier.

Theorem 22.7. Suppose that conditional on the choice of action At = a, the received loss Ya(t) is
σ2-sub-Gaussian with mean L(a, θ), that is,

E [exp (λ(Ya(t)− L(a, θ))) | Ht−1] ≤ exp

(
λ2σ2

2

)
for all a ∈ A.

Then for all δ ≥ 0 we have

Regn(A, L, π) ≤ 4

√
2σ2 log

1

δ

√
|A|n+ 3nδσ|A|.

In particular, choosing δ = 1
n gives

Regn(A, L, π) ≤ 6σ
√
|A|n log n+ 3σ|A|.

Proof We choose the upper and lower bound functions somewhat carefully so as to get a fairly
sharp regret guarantee. In particular, we (as in our analysis of the UCB algorithm) let δ ∈ (0, 1)
and define Ta(t) := card{τ ≤ t : At = a} to be the number of times that action a has been chosen
by iteration t. Then we define the mean loss for action a at time t by

L̂a(t) :=
1

Ta(t)

∑
τ≤t,Aτ=a

Ya(τ)

and our bounds for the analysis by

Ut(a) := L̂a(t) +

√
2σ2 log 1

δ

Ta(t)
and Lt(a) := L̂a(t)−

√
2σ2 log 1

δ

Ta(t)
.

With these choices, we see that by the extension of the sub-Gaussian concentration bound (22.1.1)
and the equality (22.A.1) showing that the sum

∑
τ≤t,Aτ=a Ya(τ) is equal in distribution to the sum∑

τ≤t,Aτ=a Y
′
a(τ), where Y ′a(τ) are independent and identically distributed copies of Ya(τ), we have

for any ε ≥ 0 that

P(Ut(a) ≤ L(a, θ)− ε | Ta(t)) ≤ exp

−Ta(t)
2σ2

(√
2σ2 log 1

δ

Ta(t)
+ ε

)2
 ≤ exp

(
− log

1

δ
− Ta(t)ε

2

2σ2

)
,

(22.2.3)
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where the final inequality uses that (a+ b)2 ≥ a2 + b2 for ab ≥ 0. We have an identical bound for
P(Lt(a) ≥ L(a, θ) + ε | Ta(t)).

We may now bound the final two sums in the regret expansion (22.2.2) using inequality (22.2.3).
First, however, we make the observation that for any nonnegative random variable Z, we have
E[Z] =

∫∞
0 P(Z ≥ ε)dε. Using this, we have

n∑
t=1

Eπ [L(At, θ)− Ut(At)] ≤
n∑
t=1

∑
a∈A

Eπ
[
[L(a, θ)− Ut(a)]+

]
=

n∑
t=1

∑
a∈A

Eπ
[∫ ∞

0
P(Ut(a) ≥ L(a, θ) + ε | Ta(t))dε

]
(i)

≤
n∑
t=1

∑
a∈A

δEπ
[∫ ∞

0
exp

(
−Ta(t)ε

2

2σ2

)
dε

]
(ii)
=

n∑
t=1

δ
∑
a∈A

Eπ
[√

πσ2

2Ta(t)

]
,

where inequality (i) uses the bound (22.2.3) and equality (ii) uses that this is the integral of half
of a normal density. Substituting this bound, as well as the identical one for the terms involving
Lt(A

?
t ), into the decomposition (22.2.2) yields

Regn(A, L, π) ≤
n∑
t=1

Eπ[Ut(At)− Lt(At)] +
n∑
t=1

δ
∑
a∈A

Eπ

[√
2πσ2

Ta(t)

]
.

Using that Ta(t) ≥ 1 for each action a, we have
∑

a∈A Eπ[
√

2πσ2/Ta(t)] < 3σ|A|. Lastly, we use
that

Ut(At)− Lt(At) = 2

√
2σ2 log 1

δ

TAt(t)
.

Thus we have

n∑
t=1

Eπ[Ut(At)− Lt(At)] = 2

√
2σ2 log

1

δ

∑
a∈A

Eπ

[ ∑
t:At=a

1√
Ta(t)

]
.

Once we see that
∑T

t=1 t
− 1

2 ≤
∫ T

0 t−
1
2dt = 2

√
T , we have the upper bound

Regn(A, L, π) ≤ 4

√
2σ2 log

1

δ

∑
a∈A

Eπ[
√
Ta(n)] + 3nδσ|A|.

As
∑

a∈A Ta(n) = n, the Cauchy-Scwharz inequality implies
∑

a∈A
√
Ta(n) ≤

√
|A|n, which gives

the result.

An immediate Corollary of Theorem 22.7 is the following result, which applies in the case of
bounded losses Ya as in Examples 22.5 and 22.6.

Corollary 22.8. Let the losses Ya ∈ [0, 1] with E[Ya | θ] = θa, where θi
iid∼ Beta(1, 1) for i =

1, . . . ,K. Then Thompson sampling satisfies

Regn(A, L, π) ≤ 3
√
Kn log n+

3

2
K.
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22.2.2 An information-theoretic analysis

22.2.3 Information and exploration

22.3 Online gradient descent approaches

It is also possible to use online gradient descent approaches to minimize regret in the more standard
multi-armed bandit setting. In this scenario, our goal is to minimize a sequentially (partially)
observed loss, as in the previous section. In this case, as usual we have K arms with non-negative
means µ1, . . . , µK , and we wish to find the arm with lowest mean loss. We build off of the online
convex optimization procedures of Chapter 21 to achieve good regret guarantees. In particular,
at each step of the bandit procedure, we play a distribution wt ∈ ∆K on the arms, and then
we select one arm j at random, each with probability wt,j . The expected loss we suffer is then
Lt(wt) = 〈wt, µ〉, though we observe only a random realization of the loss for the arm a that we
play.

Because of its natural connections with estimation of probability distributions, we would like
to use the exponentiated gradient algorithm, Example 21.6, to play this game. We face one main
difficulty: we must estimate the gradient of the losses, ∇Lt(wt) = µ, even though we only observe a
random variable Ya(t) ∈ R+, conditional on selecting action At = a at time t, with the property that
E[Ya(t)] = µa. Happily, we can construct such an estimate without too much additional variance.

Lemma 22.9. Let Y ∈ RK be a random variable with E[Y ] = µ and w ∈ ∆K be a probability
vector. Choose a coordinate a with probability wa and define the random vector

Ỹj =

{
Yj/wj if j = a

0 otherwise.

Then E[Ỹ | Y ] = Y .

Proof The proof is immediate: for each coordinate j of Ỹ , we have E[Ỹj | Y ] = wjYj/wj = Yj .

Lemma 22.9 suggests the following procedure, which gives rise to (a variant of) Auer et al.’s
EXP3 (Exponentiated gradient for Exploration and Exploitation) algorithm [13]. We can prove
the following bound on the expected regret of the EXP3 Algorithm 22.3 by leveraging our refined
analysis of exponentiated gradients in Proposition 21.13.

Proposition 22.10. Assume that for each j, we have E[Y 2
j ] ≤ σ2 and the observed loss Yj ≥ 0.

Then Alg. 22.3 attains expected regret (we are minimizing)

Regn =
n∑
t=1

E[µAt − µi? ] ≤
logK

η
+
η

2
σ2Kn.

In particular, choosing η =
√

logK/(Kσ2n) gives

Regn =
n∑
t=1

E[µAt − µi? ] ≤
3

2
σ
√
Kn logK.

275



Stanford Statistics 311/Electrical Engineering 377 John Duchi

Input: stepsize parameter η, initial vector w1 = [ 1
K · · ·

1
K ]>

Repeat: for each iteration t, choose random action At = a with probability wt,a
Receive non-negative loss Ya(t), and define

gt,j =

{
Yj(t)/wj if At = j

0 otherwise.

Update for each i = 1, . . . ,K

wt+1,i =
wt,i exp(−ηgt,i)∑
j wt,j exp(−ηgt,j)

.

Figure 22.3: Exponentiated gradient for bandit problems.

Proof With Lemma 22.9 in place, we recall the refined regret bound of Proposition 21.13. We
have that for w? ∈ ∆K and any sequence of vectors g1, g2, . . . with gt ∈ RK+ , then exponentiated
gradient descent achieves

n∑
t=1

〈gt, wt − w?〉 ≤
logK

η
+
η

2

n∑
t=1

k∑
j=1

wt,jg
2
t,j .

To transform this into a useful bound, we take expectations. Indeed, we have

E[gt | wt] = E[Y ] = µ

by construction, and we also have

E
[ k∑
j=1

wt,jg
2
t,j | wt

]
=

K∑
j=1

w2
t,jE[Yj(t)

2/w2
t,j | wt] =

K∑
j=1

E[Y 2
j ] = E[‖Y ‖22].

This careful normalizing, allowed by Proposition 21.13, is essential to our analysis (and fails for
more naive applications of online convex optimization bounds). In particular, we have

Regn =

n∑
t=1

E[〈µ,wt − w?〉] =

n∑
t=1

E[〈gt, wt − w?〉] ≤
logK

η
+
η

2
nE[‖Y ‖22].

Taking expectations gives the result.

When the random observed losses Ya(t) are bounded in [0, 1], then we have the mean regret
bound 3

2

√
Kn logK, which is as sharp as any of our other bounds.

22.4 Further notes and references

An extraordinarily abbreviated bibliography follows.
The golden oldies: Thompson [131], Robbins [121], and Lai and Robbins [100].
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More recent work in machine learning (there are far too many references to list): the books
Cesa-Bianchi and Lugosi [40] and Bubeck and Cesa-Bianchi [35] are good references. The papers
of Auer et al. [13] and Auer et al. [12] introduced UCB and EXP3.

Our approach to Bayesian bandits follows Russo and Van Roy [123, 124, 125]. More advanced
techniques allow Thompson sampling to apply even when the prior is unknown (e.g. Agrawal and
Goyal [2]).

22.A Technical proofs

22.A.1 Proof of Claim (22.1.1)

We let Y ′i (τ), for τ = 1, 2, . . ., be independent and identically distributed copies of the random
variables Yi(τ), so that Y ′i (τ) is also independent of Ti(t) for all t and τ . We claim that the pairs

(µ̂i(t), Ti(t))
dist
=
(
µ̂′i(t), Ti(t)

)
, (22.A.1)

where µ̂′i(t) = 1
Ti(t)

∑
τ :Aτ=i Y

′
i (τ) is the empirical mean of the copies Y ′i (τ) for those steps when

arm i is selected. To see this, we use the standard fact that the characteristic function of a random
variable completely characterizes the random variable. Let ϕYi(λ) = E[eιλYi ], where ι =

√
−1 is

the imaginary unit, denote the characteristic function of Yi, noting that by construction we have
ϕYi = ϕY ′i . Then writing the joint characteristic function of Ti(t)µ̂i(t) and Ti(t), we obtain

E

[
exp

(
ιλ1

t∑
τ=1

1 {Aτ = i}Yi(τ) + ιλ2Ti(t)

)]
(i)
= E

[
t∏

τ=1

E [exp (ιλ11 {Aτ = i}Yi(τ) + ιλ21 {Aτ = i}) | Hτ−1]

]
(ii)
= E

[
t∏

τ=1

(
1 {Aτ = i} eιλ2E [exp(ιλ1Yi(τ)) | Hτ−1] + 1 {Aτ 6= i}

)]
(iii)
= E

[
t∏

τ=1

(
1 {Aτ = i} eλ2ιϕYi(λ1) + 1 {Aτ 6= i}

)]
(iv)
= E

[
t∏

τ=1

(
1 {Aτ = i} eλ2ιϕY ′i (λ1) + 1 {Aτ 6= i}

)]

= E

[
exp

(
ιλ1

t∑
τ=1

1 {Aτ = i}Y ′i (τ) + ιλ2Ti(t)

)]
,

where equality (i) is the usual tower property of conditional expectations, where Hτ−1 denotes the
history to time τ − 1, equality (ii) because Aτ ∈ Hτ−1 (that is, it is a function of the history),
equality (iii) follows because Yi(τ) is independent of Hτ−1, and equality (iv) follows because Y ′i and
Yi have identical distributions. The final step is simply reversing the steps.
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With the distributional equality (22.A.1) in place, we see that for any δ ∈ [0, 1], we have

P

µ̂i(t) ≥ µi +

√
σ2 log 1

δ

Ti(t)

 = P

µ̂′i(t) ≥ µi +

√
σ2 log 1

δ

Ti(t)

 = P

µ̂′i(t) ≥ µi +

√
σ2 log 1

δ

Ti(t)


=

t∑
s=1

P

µ̂′i(t) ≥ µi +

√
σ2 log 1

δ

s
| Ti(t) = s

P(Ti(t) = s)

≤
t∑

s=1

δP(Ti(t) = s) = δ.

The proof for the lower tail is similar.
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Appendix A

Review of Convex Analysis

In this appendix, we review several results in convex analysis that are useful for our purposes. We
give only a cursory study here, identifying the basic results and those that will be of most use to
us; the field of convex analysis as a whole is vast. The study of convex analysis and optimization
has become very important practically in the last fourty to fifty years for a few reasons, the most
important of which is probably that convex optimization problems—those optimization problems
in which the objective and constraints are convex—are tractable, while many others are not. We do
not focus on optimization ideas here, however, building only some analytic tools that we will find
useful. We borrow most of our results from Hiriart-Urruty and Lemaréchal [84], focusing mostly on
the finite-dimensional case (though we present results that apply in infinite dimensional cases with
proofs that extend straightforwardly, and we do not specify the domains of our functions unless
necessary), as we require no results from infinite-dimensional analysis.

In addition, we abuse notation and assume that the range of any function is the extended real
line, meaning that if f : C → R we mean that f(x) ∈ R ∪ {−∞,+∞}, where −∞ and +∞ are
infinite and satisfy a +∞ = +∞ and a − ∞ = −∞ for any a ∈ R. However, we assume that
our functions are proper, meaning that f(x) > −∞ for all x, as this allows us to avoid annoying
pathologies.

A.1 Convex sets

We begin with the simplest and most important object in convex analysis, a convex set.

Definition A.1. A set C is convex if for all λ ∈ [0, 1] and all x, y ∈ C, we have

λx+ (1− λ)y ∈ C.

An important restriction of convex sets is to closed convex sets, those convex sets that are, well,
closed.

TODO: Picture
We now consider two operations that extend sets, convexifying them in nice ways.

Definition A.2. The affine hull of a set C is the smallest affine set containing C. That is,

aff(C) :=

{ k∑
i=1

λixi : k ∈ N, xi ∈ C, λ ∈ Rk,
k∑
i=1

λi = 1

}
.
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Associated with any set is also its convex hull:

Definition A.3. The convex hull of a set C ⊂ Rd, denoted Conv(C), is the intersection of all
convex sets containing C.

TODO: picture
An almost immediate associated result is that the convex hull of a set is equal to the set of all

convex combinations of points in the set.

Proposition A.1. Let C be an arbitrary set. Then

Conv(C) =

{ k∑
i=1

λixi : k ∈ N, xi ∈ C, λ ∈ Rk+,
k∑
i=1

λi = 1

}
.

Proof Call T the set on the right hand side of the equality in the proposition. Then T ⊃ C
is clear, as we may simply take λ1 = 1 and vary x ∈ C. Moreover, the set T ⊂ Conv(C), as any
convex set containing C must contain all convex combinations of its elements; similarly, any convex
set S ⊃ C must have S ⊃ T .

Thus if we show that T is convex, then we are done. Take any two points x, y ∈ T . Then
x =

∑k
i=1 αixi and y =

∑l
i=1 βiyi for xi, yi ∈ C. Fix λ ∈ [0, 1]. Then (1− λ)βi ≥ 0 and λαi ≥ 0 for

all i,

λ

k∑
i=1

αi + (1− λ)

l∑
i=1

βi = λ+ (1− λ) = 1,

and λx+ (1− λ)y is a convex combination of the points xi and yi weighted by λαi and (1− λ)βi,
respectively. So λx+ (1− λ)y ∈ T and T is convex.

We also give one more definition, which is useful for dealing with some pathalogical cases in
convex analysis, as it allows us to assume many sets are full-dimensional.

Definition A.4. The relative interior of a set C is the interior of C relative to its affine hull, that
is,

relint(C) := {x ∈ C : B(x, ε) ∩ aff(C) ⊂ C for some ε > 0} ,

where B(x, ε) := {y : ‖y − x‖ < ε} denotes the open ball of radius ε centered at x.

An example may make Definition A.4 clearer.

Example A.2 (Relative interior of a disc): Consider the (convex) set

C =
{
x ∈ Rd : x2

1 + x2
2 ≤ 1, xj = 0 for j ∈ {3, . . . , d}

}
.

The affine hull aff(C) = R2×{0} = {(x1, x2, 0, . . . , 0) : x1, x2 ∈ R} is simply the (x1, x2)-plane
in Rd, while the relative interior relint(C) = {x ∈ Rd : x2

1 + x2
2 < 1} ∩ aff(C) is the “interior”

of the 2-dimensional disc in Rd. 3

In finite dimensions, we may actually restrict the definition of the convex hull of a set C to convex
combinations of a bounded number (the dimension plus one) of the points in C, rather than arbi-
trary convex combinations as required by Proposition A.1. This result is known as Carathéodory’s
theorem.
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Theorem A.3. Let C ⊂ Rd. Then x ∈ Conv(C) if and only if there exist points x1, . . . , xd+1 ∈ C
and λ ∈ Rd+1

+ with
∑d+1

i=1 λi = 1 such that

x =
d+1∑
i=1

λixi.

Proof It is clear that if x can be represetned as such a sum, then x ∈ Conv(C). Conversely,
Proposition A.1 implies that for any x ∈ Conv(C) we have

x =

k∑
i=1

λixi, λi ≥ 0,

k∑
i=1

λi = 1, xi ∈ C

for some λi, xi. Assume that k > d+1 and λi > 0 for each i, as otherwise, there is nothing to prove.
Then we know that the points xi − x1 are certainly linearly dependent (as there are k − 1 > d of
them), and we can find (not identically zero) values α2, . . . , αk such that

∑k
i=2 αi(xi−x1) = 0. Let

α1 = −
∑k

i=2 αi to obtain that we have both

k∑
i=1

αixi = 0 and

k∑
i=1

αi = 0. (A.1.1)

Notably, the equalities (A.1.1) imply that at least one αi > 0, and if we define λ∗ = mini:αi>0
λi
αi
> 0,

then setting λ′i = λi − λ∗αi we have

λ′i ≥ 0 for all i,

k∑
i=1

λ′i =

k∑
i=1

λi − λ∗
k∑
i=1

αi = 1, and

k∑
i=1

λ′ixi =

k∑
i=1

λixi − λ∗
k∑
i=1

αixi = x.

But we know that at least one of the λ′i = 0, so that we could write x as a convex combination of
k − 1 elements. Repeating this strategy until k = d+ 1 gives the theorem.

A.1.1 Operations preserving convexity

We now touch on a few simple results about operations that preserve convexity of convex sets.
First, we make the following simple observation.

Observation A.4. Let C be a convex set. Then C = Conv(C).

Observation A.4 is clear, as we have C ⊂ Conv(C), while any other convex S ⊃ C clearly satisfies
S ⊃ Conv(C). Secondly, we note that intersections preserve convexity.

Observation A.5. Let {Cα}α∈A be an arbitrary collection of convex sets. Then

C =
⋂
α∈A

Cα

is convex. Moreover, if Cα is closed for each α, then C is closed as well.
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The convexity property follows because if x1 ∈ C and x2 ∈ C, then clearly x1, x2 ∈ Cα for all
α ∈ A, and moreover λx1 + (1 − λ)x2 ∈ Cα for all α and any λ ∈ [0, 1]. The closure property is
standard. In addition, we note that closing a convex set maintains convexity.

Observation A.6. Let C be convex. Then cl(C) is convex.

To see this, we note that if x, y ∈ cl(C) and xn → x and yn → y (where xn, yn ∈ C), then for any
λ ∈ [0, 1], we have λxn + (1 − λ)yn ∈ C and λxn + (1 − λ)yn → λx + (1 − λ)y. Thus we have
λx+ (1− λ)y ∈ cl(C) as desired.

Observation A.6 also implies the following result.

Observation A.7. Let D be an arbitrary set. Then⋂
{C : C ⊃ D, C is convex} = cl Conv(D).

Proof Let T denote the leftmost set. It is clear that T ⊂ cl Conv(D) as cl Conv(D) is a closed
convex set (by Observation A.6) containing D. On the other hand, if C ⊃ D is a closed convex
set, then C ⊃ Conv(D), while the closedness of C implies it also contains the closure of Conv(D).
Thus T ⊃ cl Conv(D) as well.

TODO: picture
As our last consideration of operations that preserve convexity, we consider what is known as

the perspective of a set. To define this set, we need to define the perspective function, which, given
a point (x, t) ∈ Rd × R++ (here R++ = {t : t > 0} denotes strictly positive points), is defined as

pers(x, t) =
x

t
.

We have the following definition.

Definition A.5. Let C ⊂ Rd ×R+ be a set. The perspective transform of C, denoted by pers(C),
is

pers(C) :=
{x
t

: (x, t) ∈ C and t > 0
}
.

This corresponds to taking all the points z ∈ C, normalizing them so their last coordinate is 1, and
then removing the last coordinate. (For more on perspective functions, see Boyd and Vandenberghe
[31, Chapter 2.3.3].)

It is interesting to note that the perspective of a convex set is convex. First, we note the
following.

Lemma A.8. Let C ⊂ Rd+1 be a compact line segment, meaning that C = {λx + (1 − λ)y : λ ∈
[0, 1]}, where xd+1 > 0 and yd+1 > 0. Then pers(C) = {λpers(x) + (1− λ) pers(y) : λ ∈ [0, 1]}.

Proof Let λ ∈ [0, 1]. Then

pers(λx+ (1− λ)y) =
λx1:d + (1− λ)y1:d

λxd+1 + (1− λ)yd+1

=
λxd+1

λxd+1 + (1− λ)yd+1

x1:d

xd+1
+

(1− λ)yd+1

λxd+1 + (1− λ)yd+1

y1:d

yd+1

= θ pers(x) + (1− θ) pers(y),
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where x1:d and y1:d denote the vectors of the first d components of x and y, respectively, and

θ =
λxd+1

λxd+1 + (1− λ)yd+1
∈ [0, 1].

Sweeping λ from 0 to 1 sweeps θ ∈ [0, 1], giving the result.

Based on Lemma A.8, we immediately obtain the following proposition.

Proposition A.9. Let C ⊂ Rd × R++ be a convex set. Then pers(C) is convex.

Proof Let x, y ∈ C and define L = {λx + (1 − λ)y : λ ∈ [0, 1]} to be the line segment between
them. By Lemma A.8, pers(L) = {λpers(x) + (1 − λ) pers(y) : λ ∈ [0, 1]} is also a (convex) line
segment, and we have pers(L) ⊂ pers(C) as necessary.

A.1.2 Representation and separation of convex sets

We now consider some properties of convex sets, showing that (1) they have nice separation
properties—we can put hyperplanes between them—and (2) this allows several interesting rep-
resentations of convex sets. We begin with the separation properties, developing them via the
existence of projections. Interestingly, this existence of projections does not rely on any finite-
dimensional structure, and can even be shown to hold in arbitrary Banach spaces (assuming the
axiom of choice) [106]. We provide the results in a Hilbert space, meaning a complete vector space
for which there exists an inner product 〈·, ·〉 and associated norm ‖·‖ given by ‖x‖2 = 〈x, x〉. We
first note that projections exist.

Theorem A.10 (Projections). Let C be a closed convex set. Then for any x, there exists a unique
point πC(x) minimizing ‖y − x‖ over y ∈ C. Moreover, this point is characterized by the inequality

〈πC(x)− x, y − πC(x)〉 ≥ 0 for all y ∈ C. (A.1.2)

Proof The existence and uniqueness of the projection follows from the parallelogram identity,
that is, that for any x, y we have ‖x− y‖2 + ‖x+ y‖2 = 2(‖x‖2 + ‖y‖2), which follows by noting
that ‖x+ y‖2 = ‖x‖2 + ‖y‖2 + 2〈x, y〉. Indeed, let {yn} ⊂ C be a sequence such that

‖yn − x‖ → inf
y∈C
‖y − x‖ =: p?

as n→∞, where p? is the infimal value. We show that yn is Cauchy, so that there exists a (unique)
limit point of the sequence. Fix ε > 0 and let N be such that n ≥ N implies ‖yn − x‖2 ≤ p2

? + ε2.
Let m,n ≥ N . Then by the parallelogram identity,

‖yn − ym‖2 = ‖(x− yn)− (x− ym)‖2 = 2
[
‖x− yn‖2 + ‖x− ym‖2

]
− ‖(x− yn) + (x− ym)‖2 .

Noting that

(x− yn) + (x− ym) = 2

[
x− yn + ym

2

]
and

yn + ym
2

∈ C (by convexity of C),
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we have

‖x− yn‖2 ≤ p2
?+ε

2, ‖x− ym‖2 ≤ p2
?+ε

2, and ‖(x− yn) + (x− ym)‖2 = 4

∥∥∥∥x− yn + ym
2

∥∥∥∥2

≥ 4p2
?.

In particular, we have

‖yn − ym‖2 ≤ 2
[
p2
? + ε2 + p2

? + ε2
]
− 4p2

? = 4ε2.

As ε > 0 was arbitrary, this completes the proof of the first statement of the theorem.
To see the second result, assume that z is a point satisfying inequality (A.1.2), that is, such

that
〈z − x, y − z〉 ≥ 0 for all y ∈ C.

Then we have

‖z − x‖2 = 〈z − x, z − x〉 = 〈z − x, z − y〉︸ ︷︷ ︸
≤0

+〈z − x, y − x〉 ≤ ‖z − x‖ ‖y − x‖

by the Cauchy-Schwarz inequality. Dividing both sides by ‖z − x‖ yields ‖z − x‖ ≤ ‖y − x‖ for
any y ∈ C, giving the result. Conversely, let t ∈ [0, 1]. Then for any y ∈ C,

‖πC(x)− x‖2 ≤ ‖(1− t)πC(x) + ty − x‖2 = ‖πC(x)− x+ t(y − πC(x))‖2

= ‖πC(x)− x‖2 + 2t〈πC(x)− x, y − πC(x)〉+ t2 ‖y − πC(x)‖2 .

Subtracting the projection value ‖πC(x)− x‖2 from both sides and dividing by t > 0, we have

0 ≤ 2〈πC(x)− x, y − πC(x)〉+ t ‖y − πC(x)‖2 .

Taking t→ 0 gives inequality (A.1.2).

As an immediate consequence of Theorem A.10, we obtain several separation properties of
convex sets, as well as a theorem stating that a closed convex set (not equal to the entire space in
which it lies) can be represented as the intersection of all the half-spaces containing it.

Corollary A.11. Let C be closed convex and x 6∈ C. Then there is a vector v strictly separating
x from C, that is,

〈v, x〉 > sup
y∈C
〈v, y〉.

Moreover, we can take v = x− πC(x).

Proof By Theorem A.10, we know that taking v = x− πC(x) we have

0 ≤ 〈y − πC(x), πC(x)− x〉 = 〈y − πC(x),−v〉 = 〈y − x+ v,−v〉 = −〈y, v〉+ 〈x, v〉 − ‖v‖2 .

That is, we have 〈v, y〉 ≤ 〈v, x〉 − ‖v‖2 for all y ∈ C and v 6= 0.

In addition, we can show the existence of supporting hyperplanes, that is, hyperplanes “sepa-
rating” the boundary of a convex set from itself.
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Theorem A.12. Let C be a convex set and x ∈ bd(C), where bd(C) = cl(C) \ intC. Then there
exists a non-zero vector v such that 〈v, x〉 ≥ supy∈C〈v, y〉.

Proof Let D = cl(C) be the closure of C and let xn 6∈ D be a sequence of points such that
xn → x. Let us define the sequence of separating vectors sn = xn − πD(xn) and the normalized
version vn = sn/ ‖sn‖. Notably, we have 〈vn, xn〉 > supy∈C〈vn, y〉 for all n. Now, the sequence
{vn} ⊂ {v : ‖v‖ = 1} belongs to a compact set.1 Passing to a subsequence if necessary, let us
assume w.l.o.g. that vn → v with ‖v‖ = 1. Then by a standard limiting argument for the xn → x,
we have

〈v, x〉 ≥ 〈v, y〉 for all y ∈ C,

which was our desired result.

TODO: Picture of supporting hyperplanes and representations
Theorem A.12 gives us an important result. In particular, let D be an arbitrary set, and let

C = cl Conv(D) be the closure of the convex hull of D, which is the smallest closed convex set
containing D. Then we can write C as the intersection of all the closed half-spaces containing D;
this is, in some sense, the most useful “convexification” of D. Recall that a closed half-space H is
defined with respect to a vector v and real a ∈ R as

H := {x : 〈v, x〉 ≤ r}.

Before stating the theorem, we remark that by Observation A.6, the intersection of all the closed
convex sets containing a set D is equal to the closure of the convex hull of D.

Theorem A.13. Let D be an arbitrary set. If C = cl Conv(D), then

C =
⋂
H⊃D

H, (A.1.3)

where H denotes a closed half-space containing D. Moreover, for any closed convex set C,

C =
⋂

x∈bd(C)

Hx, (A.1.4)

where Hx denotes the intersection of halfspaces supporting C at x.

Proof We begin with the proof of the second result (A.1.4). Indeed, by Theorem A.12, we know
that at each point x on the boundary of C, there exists a non-zero supporting hyperplane v, so
that the half-space

Hx,v := {y : 〈v, y〉 ≤ 〈v, x〉} ⊃ C

is closed, convex, and contains C. We clearly have the containment C ⊂ ∩x∈bd(C)Hx. Now let
x0 6∈ C; we show that x0 6∈ ∩x∈bd(C)Hx. As x0 6∈ C, the projection πC(x0) of x0 onto C satisfies
〈x0 − πC(x0), x0〉 > supy∈C〈x0 − πC(x0), y〉 by Corollary A.11. Moreover, letting v = x0 − πC(x0),
the hyperplane

hx0,v := {y : 〈y, v〉 = 〈πC(x0), v〉}
1In infinite dimensions, this may not be the case. But we can apply the Banach-Alaoglu theorem, which states

that, as vn are linear operators, the sequence is weak-* compact, so that there is a vector v with ‖v‖ ≤ 1 and a
subequence m(n) ⊂ N such that 〈vm(n), x〉 → 〈v, x〉 for all x.
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is clearly supporting to C at the point πC(x0). The half-space {y : 〈y, v〉 ≤ 〈πC(x0), v〉} thus
contains C and does not contain x0, implying that x0 6∈ ∩x∈bd(C)Hx.

Now we show the first result (A.1.3). Let C be the closed convex hull of D and T = ∩H⊃DH.
By a trivial extension of the representation (A.1.4), we have that C = ∩H⊃CH, where H denotes
any halfspace containing C. As C ⊃ D, we have that H ⊃ C implies H ⊃ D, so that

T =
⋂
H⊃D

H ⊂
⋂
H⊃C

H = C.

On the other hand, as C = cl Conv(D), Observation A.7 implies that any closed set containing D
contains C. As a closed halfspace is convex and closed, we have that H ⊃ D implies H ⊃ C, and
thus T = C as desired.

A.2 Convex functions

epi f

Figure A.1: The epigraph of a convex function.

We now build off of the definitions of convex sets to define convex functions. As we will see,
convex functions have several nice properties that follow from the geometric (separation) properties
of convex sets. First, we have

Definition A.6. A function f is convex if for all λ ∈ [0, 1] and x, y ∈ dom f ,

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y). (A.2.1)

We define the domain dom f of a convex function to be those points x such that f(x) < +∞. Note
that Definition A.6 implies that the domain of f must be convex.

An equivalent definition of convexity follows by considering a natural convex set attached to
the function f , known as its epigraph.
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Definition A.7. The epigraph epi f of a function is the set

epi f := {(x, t) : t ∈ R, f(x) ≤ t}.

That is, the epigraph of a function f is the set of points on or above the graph of the function itself,
as depicted in Figure A.1. It is immediate from the definition of the epigraph that f is convex if
and only if epi f is convex. Thus, we see that any convex set C ⊂ Rd+1 that is unbounded “above,”
meaning that C = C + {0} × R+, defines a convex function, and conversely, any convex function
defines such a set C. This duality in the relationship between a convex function and its epigraph
is central to many of the properties we exploit.

A.2.1 Equivalent definitions of convex functions

We begin our discussion of convex functions by enumerating a few standard properties that also
characterize convexity. The simplest of these relate to properties of the derivatives and second
derivatives of functions.

We begin with a first-order characterization. Suppose that f : R→ R is differentiable, and that
for all x, y ∈ R, we have

f(y) ≥ f(x) + f ′(x)(y − x). (A.2.2)

We claim that inequality (A.2.2) implies that f is convex. Indeed, let λ ∈ [0, 1] and z = λx+(1−λ)y,
so that y − z = λ(y − x) and x− z = (1− λ)(x− y). Then

f(y) ≥ f(z) + λf ′(z)(y − x) and f(x) ≥ f(z) + (1− λ)f ′(z)(x− y),

and multiplying the former by (1− λ) and the latter by λ and adding the two inequalities yields

λf(x)+(1−λ)f(y) ≥ λf(z)+(1−λ)f(z)+λ(1−λ)f ′(z)(y−x)+λ(1−λ)f ′(z)(x−y) = f(λx+(1−λ)y),

as desired. In Theorem A.14 to come, we see that the converse to inequality (A.2.2) holds as well,
that is, differentiable convex functions satisfy inequality (A.2.2).

We may also give the standard second order characterization: if f : R→ R is twice differentiable
and f ′′(x) ≥ 0 for all x, then f is convex. To see this, note that

f(y) = f(x) + f ′(x)(y − x) +
1

2
f ′′(tx+ (1− t)y)(x− y)2

for some t ∈ [0, 1] by Taylor’s theorem, so that f(y) ≥ f(x) + f ′(x)(y − x) for all x, y because
f ′′(tx + (1 − t)y) ≥ 0. As a consquence, we obtain inequality (A.2.2), which implies that f is
convex.

As convexity is a property that depends only on properties of functions on lines—one dimen-
sional projections—we can straightforwardly extend the preceding results to functions f : Rd → R.
Indeed, noting that if h(t) = f(x + ty) then h′(0) = 〈∇f(x), y〉 and h′′(0) = y>∇2f(x)y, we have
that a differentiable function f : Rd → R is convex if and only if

f(y) ≥ f(x) +∇f(x)>(y − x) for all x, y,

while a twice differentabile function f : Rd → R is convex if and only if

∇2f(x) � 0 for all x.
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A.2.2 Continuity properties of convex functions

We now consider a few continuity properties of convex functions and a few basic relationships of
the function f to its epigraph. First, we give a definition of the subgradient of a convex function.

Definition A.8. A vector g is a subgradient of f at a point x0 if for all x,

f(x) ≥ f(x0) + 〈g, x− x0〉. (A.2.3)

See Figure A.2 for an illustration of the affine minorizing function given by the subgradient of a
convex function at a particular point.

(x0, f(x0))
f(x0) + 〈g, x− x0〉

f(x)

Figure A.2. The tangent (affine) function to the function f generated by a subgradient g at the
point x0.

Interestingly, convex functions have subgradients (at least, nearly everywhere). This is perhaps
intuitively obvious by viewing a function in conjunction with its epigraph epi f and noting that
epi f has supporting hyperplanes, but here we state a result that will have further use.

Theorem A.14. Let f be convex. Then there is an affine function minorizing f . More precisely,
for any x0 ∈ relint dom f , there exists a vector g such that

f(x) ≥ f(x0) + 〈g, x− x0〉.

Proof If relint dom f = ∅, then it is clear that f is either identically +∞ or its domain is a
single point {x0}, in which case the constant function f(x0) minorizes f . Now, we assume that
int dom f 6= ∅, as we can simply always change basis to work in the affine hull of dom f .

We use Theorem A.12 on the existence of supporting hyperplanes to construct a subgradient.
Indeed, we note that (x0, f(x0)) ∈ bd epi f , as for any open set O we have that (x0, f(x0)) + O
contains points both inside and outside of epi f . Thus, Theorem A.12 guarantees the existence of
a vector v and a ∈ R, not both simultaneously zero, such that

〈v, x0〉+ af(x0) ≤ 〈v, x〉+ at for all (x, t) ∈ epi f. (A.2.4)
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Inequality (A.2.4) implies that a ≥ 0, as for any x we may take t → +∞ while satisfying (x, t) ∈
epi f . Now we argue that a > 0 strictly. To see this, note that for suitably small δ > 0, we have
x = x0 − δv ∈ dom f . Then we find by inequality (A.2.4) that

〈v, x0〉+ af(x0) ≤ 〈v, x0〉 − δ ‖v‖2 + af(x0 − δv), or a [f(x0)− f(x0 − δv)] ≤ −δ ‖v‖2 .

So if v = 0, then Theorem A.12 already guarantees a 6= 0, while if v 6= 0, then ‖v‖2 > 0 and we
must have a 6= 0 and f(x0) 6= f(x0 − δv). As we showed already that a ≥ 0, we must have a > 0.
Then by setting t = f(x0) and dividing both sides of inequality (A.2.4) by a, we obtain

1

a
〈v, x0 − x〉+ f(x0) ≤ f(x) for all x ∈ dom f.

Setting g = −v/a gives the result of the theorem, as we have f(x) = +∞ for x 6∈ dom f .

Convex functions generally have quite nice behavior. Indeed, they enjoy some quite remarkable
continuity properties just by virtue of the defining convexity inequality (A.2.1). In particular, the
following theorem shows that convex functions are continuous on the relative interiors of their
domains. Even more, convex functions are Lipschitz continuous on any compact subsets contained
in the (relative) interior of their domains. (See Figure A.3 for an illustration of this fact.)

Theorem A.15. Let f : Rd → R be convex and C ⊂ relint dom f be compact. Then there exists
an L = L(C) ≥ 0 such that

|f(x)− f(x′)| ≤ L
∥∥x− x′∥∥ .

As an immediate consequence of Theorem A.15, we note that if f : Rd → R is convex and defined
everywhere on Rd, then it is continuous. Moreover, we also have that f : Rd → R is continuous
everywhere on the (relative) interior of its domain: let any x0 ∈ relint dom f . Then for small enough
ε > 0, the set cl({x0 + εB} ∩ dom f), where B = {x : ‖x‖2 ≤ 1}, is a closed and bounded—and
hence compact—set contained in the (relative) interior of dom f . Thus f is Lipschitz on this set,
which is a neighborhood of x0. In addition, if f : R → R, then f is continuous everywhere except
(possibly) at the endpoints of its domain.
Proof of Theorem A.15 To prove the theorem, we require a technical lemma.

Lemma A.16. Let f : Rd → R be convex and suppose that there are x0, δ > 0, m, and M such
that

m ≤ f(x) ≤M for x ∈ B(x0, 2δ) := {x : ‖x− x0‖ < 2δ}.

Then f is Lipschitz on B(x0, δ), and moreover,

|f(y)− f(y′)| ≤ M −m
δ

∥∥y − y′∥∥ for y, y′ ∈ B(x0, δ).

Proof Let y, y′ ∈ B(x0, δ), and define y′′ = y′ + δ(y′ − y)/ ‖y′ − y‖ ∈ B(x0, 2δ). Then we can
write y′ as a convex combination of y and y′′, specifically,

y′ =
‖y′ − y‖

δ + ‖y′ − y‖
y′′ +

δ

δ + ‖y′ − y‖
y.
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Figure A.3. Left: discontinuities in int dom f are impossible while maintaining convexity (Theo-
rem A.15). Right: At the edge of dom f , there may be points of discontinuity.

Thus we obtain by convexity

f(y′)− f(y) ≤ ‖y′ − y‖
δ + ‖y′ − y‖

f(y′′) +
δ

δ + ‖y′ − y‖
f(y)− f(y) =

‖y − y′‖
δ + ‖y − y′‖

[f(y′′)− f(y)]

≤ M −m
δ + ‖y − y′‖

∥∥y − y′∥∥ .
Here we have used the bounds on f assumed in the lemma. Swapping the assignments of y and y′

gives the same lower bound, thus giving the desired Lipschitz continuity.

With Lemma A.16 in place, we proceed to the proof proper. We assume without loss of gener-
ality that dom f has an interior; otherwise we prove the theorem restricting ourselves to the affine
hull of dom f . The proof follows a standard compactification argument. Suppose that for each
x ∈ C, we could construct an open ball Bx = B(x, δx) with δx > 0 such that

|f(y)− f(y′)| ≤ Lx
∥∥y − y′∥∥ for y, y′ ∈ Bx. (A.2.5)

As the Bx cover the compact set C, we can extract a finite number of them, call them Bx1 , . . . , Bxk ,
covering C, and then within each (overlapping) ball f is maxk Lxk Lipschitz. As a consequence, we
find that

|f(y)− f(y′)| ≤ max
k

Lxk
∥∥y − y′∥∥

for any y, y′ ∈ C.
We thus must derive inequality (A.2.5), for which we use the boundedness Lemma A.16. We

must demonstrate that f is bounded in a neighborhood of each x ∈ C. To that end, fix x ∈
int dom f , and let the points x0, . . . , xd be affinely independent and such that

∆ := Conv{x0, . . . , xd} ⊂ dom f

and x ∈ int ∆; let δ > 0 be such that B(x, 2δ) ⊂ ∆. Then by Carathéodory’s theorem (Theo-
rem A.3) we may write any point y ∈ B(x, 2δ) as y =

∑d
i=0 λixi for

∑
i λi = 1 and λi ≥ 0, and
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thus

f(y) ≤
d∑
i=0

λif(xi) ≤ max
i∈{0,...,d}

f(xi) =: M.

Moreover, Theorem A.14 implies that there is some affine h function minorizing f ; let h(x) =
a+ 〈v, x〉 denote this function. Then

m := inf
x∈C

f(x) ≥ inf
x∈C

h(x) = a+ inf
x∈C
〈v, x〉 > −∞

exists and is finite, so that in the ball B(x, 2δ) constructed above, we have f(y) ∈ [m,M ] as required
by Lemma A.16. This guarantees the existence of a ball Bx required by inequality (A.2.5).

f(x)

epi f

f(x)

Figure A.4. A closed—equivalently, lower semi-continuous—function. On the right is shown the
closed epigraph of the function.

Our final discussion of continuity properties of convex functions revolves around the most com-
mon and analytically convenient type of convex function, the so-called closed-convex functions.

Definition A.9. A function f is closed if its epigraph, epi f , is a closed set.

Equivalently, a function is closed if it is lower semi-continuous, meaning that

lim inf
x→x0

f(x) ≥ f(x0) (A.2.6)

for all x0 and any sequence of points tending toward x0. See Figure A.4 for an example such
function and its associated epigraph.

Interestingly, in the one-dimensional case, closed convexity implies continuity. Indeed, we have
the following observation (compare Figures A.4 and A.3 previously):

Observation A.17. Let f : R → R be a closed convex function. Then f is continuous on its
domain.
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Proof By Theorem A.15, we need only consider the endpoints of the domain of f (the result
is obvious by Theorem A.15 if dom f = R); let x0 ∈ bd dom f . Let y ∈ dom f be an otherwise
arbitrary point, and define x = λy + (1− λ)x0. Then taking λ→ 0, we have

f(x) ≤ λf(y) + (1− λ)f(x0)→ f(x0),

so that lim supx→x0 f(x) ≤ f(x0). By the closedness assumption (A.2.6), we have lim infx→x0 f(x) ≥
f(x0), and continuity follows.

A.2.3 Operations preserving convexity

We now turn to a description of a few simple operations on functions that preserve convexity.
First, we extend the intersection properties of convex sets to operations on convex functions. (See
Figure A.5 for an illustration of the proposition.)

Proposition A.18. Let {fα}α∈A be an arbitrary collection of convex functions indexed by A. Then

f(x) := sup
α∈A

fα(x)

is convex. Moreover, if for each α ∈ A, the function fα is closed convex, f is closed convex.

Proof The proof is immediate once we consider the epigraph epi f . We have that

epi f =
⋂
α∈A

epi fα,

which is convex whenever epi fα is convex for all α and closed whenever epi fα is closed for all α
(recall Observation A.5).

Another immediate result is that composition of a convex function with an affine transformation
preserves convexity:

Proposition A.19. Let A ∈ Rd×n and b ∈ Rd, and let f : Rd → R be convex. Then the function
g(y) = f(Ay + b) is convex.

Lastly, we consider the functional analogue of the perspective transform. Given a function
f : Rd → R, the perspective transform of f is defined as

pers(f)(x, t) :=

{
tf
(
x
t

)
if t > 0 and x

t ∈ dom f

+∞ otherwise.
(A.2.7)

In analogue with the perspective transform of a convex set, the perspective transform of a function
is (jointly) convex.

Proposition A.20. Let f : Rd → R be convex. Then pers(f) : Rd+1 → R is convex.
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f1(x)

f2(x)

f(x) = max{f1(x), f2(x)}

Figure A.5. The maximum of two convex functions is convex, as its epigraph is the intersection
of the two epigraphs.

Proof The result follows if we can show that epi pers(f) is a convex set. With that in mind,
note that

Rd × R++ × R 3 (x, t, r) ∈ epi pers(f) if and only if f
(x
t

)
≤ r

t
.

Rewriting this, we have

epi pers(f) =
{

(x, t, r) ∈ Rd × R++ × R : f
(x
t

)
≤ r

t

}
=
{
t(x′, 1, r′) : x′ ∈ Rd, t ∈ R++, r

′ ∈ R, f(x′) ≤ r′
}

= {t(x, 1, r) : t > 0, (x, r) ∈ epi f} = R++ × {(x, 1, r) : (x, r) ∈ epi f}.

This is a convex cone.

A.3 Conjugacy and duality properties

a. Closed convex function as a supremum of affine functions minorizing it

b. Fenchel Conjugate functions f∗

c. Fenchel biconjugate
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A.4 Optimality conditions

Further reading

There are a variety of references on the topic, beginning with the foundational book by Rockafellar
[122], which initiated the study of convex functions and optimization in earnest. Since then, a
variety of authors have written (perhaps more easily approachable) books on convex functions,
optimization, and their related calculus. Hiriart-Urruty and Lemaréchal [84] have written two
volumes explaining in great detail finite-dimensional convex analysis, and provide a treatment of
some first-order algorithms for solving convex problems. Borwein and Lewis [29] and Luenberger
[106] give general treatments that include infinite-dimensional convex analysis, and Bertsekas [26]
gives a variety of theoretical results on duality and optimization theory.

There are, of course, books that combine theoretical treatment with questions of convex mod-
eling and procedures for solving convex optimization problems (problems for which the objective
and constraint sets are all convex). Boyd and Vandenberghe [31] gives a very readable treatment
for those who wish to use convex optimization techniques and modeling, as well as the basic results
in convex analytic background and duality theory. Ben-Tal and Nemirovski [24], as well as Ne-
mirovski’s various lecture notes, give a theory of the tractability of computing solutions to convex
optimization problems as well as methods for solving them.
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